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Figure 1: Overview of this research. (a) We built a virtual air hockey task environment controlled by a haptic device. Haptic 
guidance that assists a user’s task performance is delivered through this device. (b) We implemented optimal action-based and 
user prediction-based haptic guidance using deep learning-based approaches, proposed a combined haptic guidance for better 
performance, and experimentally compared them. 

ABSTRACT 
The recently advanced robotics technology enables robots to assist 
users in their daily lives. Haptic guidance (HG) improves users’ task 
performance through physical interaction between robots and users. 
It can be classifed into optimal action-based HG (OAHG), which 
assists users with an optimal action, and user prediction-based HG 
(UPHG), which assists users with their next predicted action. This 
study aims to understand the diference between OAHG and UPHG 
and propose a combined HG (CombHG) that achieves optimal per-
formance by complementing each HG type, which has important 
implications for HG design. We propose implementation methods 
for each HG type using deep learning-based approaches. A user 
study (n=20) in a haptic task environment indicated that UPHG 
induces better subjective evaluations, such as naturalness and com-
fort, than OAHG. In addition, the CombHG that we proposed further 
decreases the disagreement between the user intention and HG, 
without reducing the objective and subjective scores. 
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1 INTRODUCTION 
With the recent advancements in artifcial intelligence and robot-
ics technology, it is becoming increasingly common for users to 
be assisted by robots or computing machineries. In the context of 
physical human–robot interaction (pHRI), haptic modality has a 
high use potential; haptic feedback can directly pass through the 
neuromuscular system without going through a high-level recog-
nition process [1]; therefore, a user can respond faster than when 
other modalities (e.g., visual feedback) are used. Recently, the haptic 
guidance (HG) system, also called the haptic shared control system, 
has been accepted as a promising approach for human–machine 
interfaces or pHRI situations [2]. The HG system is defned as a 
method in which the control input determined through physical 
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interaction between the force exerted by a human operator and the 
guiding force of a robot is applied to the target system [1]. Com-
pared to the previous support systems using haptic cueing [12, 29] 
or input-mixing shared control [13], an advantage of the HG system 
is that the user can not only recognize the intention of the robot 
(e.g., direction and strength), but also choose to what extent this 
intention to be refected. For example, a user usually follows the 
robot’s guidance, but when his/her choice is necessary, he/she can 
apply a force that exceeds the HG to perform the desired control. 

HG technologies presented in earlier studies can be classifed into 
two categories according to their design method: optimal action-
based haptic guidance (OAHG) and user prediction-based haptic guid-
ance (UPHG). OAHG is designed to convey the optimal movement 
for performing a task in the current state (e.g., guiding the user to-
ward the center of the road in a steering task [15, 35, 53] or through 
the movement of a skilled expert in a peg-in-hole task [38]). Mean-
while, UPHG is designed to provide proactive guidance in the direc-
tion the user intends to move based on their behavior prediction. For 
example, in a steering task, it guides the users to their individually 
preferred courses rather than the center of the road [10]. Both types 
of HG systems have been proven to have several positive efects in 
terms of task performance improvement [5, 10, 15, 19, 27, 35, 55], 
user workload reduction [19, 27, 35], and user subjective satisfac-
tion [15, 19, 27] in various recent studies. 

While most of the previous studies deal with the design meth-
ods and efects of OAHG and UPHG, very few studies have clearly 
compared OAHG and UPHG. The two HGs are expected to have 
diferent characteristics because each goal behavior is diferent. 
OAHG informs the user of the most optimal action for the current 
task. However, if the guidance is in confict with the user’s intention 
(i.e., a disagreement occurs), it will lead to an undesired physical 
interaction between the user and the robot, which can induce dis-
comfort and frustration for the user [13, 19]. On the other hand, 
UPHG supports comfortable movements of the users by reducing 
trajectory mismatch with the robot [10], but has a limitation in 
that it cannot present more optimal movements, although they 
may exist. In this context, this study aims to answer the follow-
ing questions, which have important implications for pHRI design, 
“What is the diference between OAHG and UPHG in terms of user 
acceptance?” and “Is it possible to design a better HG by combining 
OAHG and UPHG?” 

To impartially compare OAHG and UPHG, we need to implement 
each type of HG to achieve its best performance for a given ap-
plication. Consequently, we present the following implementation 
methods to improve the performance of each HG based on deep 
learning approaches, which are attracting attention in recent HG 
studies [7, 46, 52]. First, a deep reinforcement learning algorithm 
is used to train an optimal action model (for OAHG) to learn the 
optimal policy (i.e., the optimal way of behaving from a specifc 
state during a task) through self-play between AI agents [3] (the 
upper fow in Figure 1(b)). Second, we train a user prediction model 
(for UPHG) in a supervised manner with multiple user’s behavior 
data. To deal with individual diferences between human opera-
tors, we apply a meta-learning approach to enable to adapt the 
model parameters according to the current user (the lower fow 
in Figure 1(b)). Third, both the optimal action model and the user 
prediction model are designed to infer the model uncertainty from 

their outputs. By making HGs consider their model uncertainty at 
every timestep, we aim to prevent the decrease in HG performance 
because of an inaccurate model. 

Another essential purpose of our study is to explore the possi-
bility of complementing each HG type. If OAHG and UPHG are in 
a trade-of relationship with each other, it can be expected to pro-
duce HG that achieves optimal performance in terms of objective 
and subjective metrics by properly harmonizing the two HG types. 
In particular, we focus on the fact that the disagreement between 
the guiding force and the user intention reduces the OAHG per-
formance [13, 19]. Therefore, we devised a method to implement 
the combined haptic guidance (CombHG) utilizing the similarity 
of guiding forces generated by the two HG types every timestep 
to minimize the disagreement. With this similarity-based method, 
the combined guiding force is adjusted according to the diference 
between the two guiding force directions. 

We conducted a user experiment with 20 participants to verify 
how each type of HG has diferent efects on objective and subjec-
tive evaluations. We built a task environment for confronting an 
AI agent in an air hockey game that can be operated and assisted 
through a haptic device, as shown in Figure 1(a). Each participant 
played the air hockey game with the HGs we implemented, and 
subjective evaluations including user interviews were conducted 
after each task. Our user experiment results indicate the follow-
ing important points. First, all types of HG—OAHG, UPHG, and 
CombHG—led to a signifcant improvement in objective user perfor-
mance compared to the case where the user did not receive any HG, 
but there was no signifcant diference in objective performance 
between the three HG types. Second, UPHG and CombHG elicited 
a signifcantly higher score in subjective metrics, such as perceived 
naturalness and comfort, than OAHG. Finally, CombHG signif-
cantly lowered the disagreement between the user intention and 
HG compared to the cases of OAHG and UPHG, without reducing 
the objective and subjective scores. 

Overall, this paper has following three key contributions: 
• We present deep learning-based approach to implement 
OAHG and UPHG to achieve their best performance, ap-
plying a self-play-based reinforcement learning framework 
for OAHG and a meta-learning framework for UPHG. In 
particular, we propose and verify two novel implementation 
methods—uncertainty-based thresholding and user adapt-
ation—to improve the HG performance. 

• We propose and verify a combined approach (CombHG) of 
OAHG and UPHG that can complement each HG type, utiliz-
ing our similarity-based combination method. To the authors’ 
knowledge, this is the frst attempt to combine OAHG and 
UPHG to achieve better performance. 

• We experimentally compare OAHG, UPHG, and CombHG 
in terms of objective and subjective metrics through a user 
study and interview (n=20). 

2 RELATED WORK 

2.1 Haptic Guidance 
Early HG studies were based on control assistance methods in 
virtual or teleoperation environments, such as a virtual fxture [42] 
and an artifcial force feld [54], which help users accurately move 
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toward goals and prevent access to dangerous areas. Robotic devices 
enabled the delivery of haptic feedback generated by the virtual 
fxture or artifcial force feld techniques to users, allowing them to 
perform the tasks with improved stability [4, 28]. Over the past few 
decades, the implementation of HG has made signifcant progress, 
and it has been embedded in a variety of forms, including haptic 
devices [5, 10, 38, 55], sleeve devices [8, 16], pen devices [25], and 
steering wheels [9, 21, 35, 50, 53]. Accordingly, the range of HG 
applications has also expanded, such as in surgical assistance [20, 41, 
55], driving assistance [21, 35, 50, 53], teleoperation of robots [38, 
47] and UAVs [28, 49], and desktop computer interfaces [11, 26]. 

A majority of the previous studies have reported positive efects 
of HG, such as improvement in task performance and user com-
fort, and reduction of user workload. Nevertheless, some elements 
of HG that hamper usability remain. As the most representative 
example, a confict between the user and the HG can lead to a tem-
porary increase in the force exerted by the user [6, 36], or even a 
decrease in performance [37]. In addition, if the interference of HG 
is excessive for a user, then the user requires more physical efort, 
which leads to a deteriorated user evaluation (e.g., low comfort and 
controllability) [30]. A detailed analysis of the factors afecting HG 
will bring useful implications in designing a user-friendly HG. In 
this study, we aim to determine what users expect (and not expect) 
from HG through a comparison between OAHG and UPHG, which 
was not sufciently covered in previous studies. Furthermore, we 
attempt, for the frst time, to optimally combine OAHG and UPHG 
to achieve better performance based on the understanding of the 
factors that infuence HG performance. 

2.2 Implementing Optimal Action-based HG 
The most straightforward way of implementing OAHG is to set a 
reference trajectory for performing a task and deliver a continu-
ous guiding force so that the user does not leave the trajectory. In 
the context of a steering task such as when driving, a number of 
studies have implemented OAHG in the form of a guiding force 
directed toward the center of the path [9, 15, 21, 35, 53]. As another 
example, in a backward parking situation, Tada et al. [50] imple-
mented OAHG by utilizing a Bezier curve between a start point and 
a target parking point as a reference trajectory. Meanwhile, when 
the reference trajectory could not be clearly defned in advance, 
a demonstration by skilled experts also served as the reference 
trajectory, for example, in the case of a handwriting task [5, 51] 
and a peg-in-hole task [38]. 

Recently, attempts have been made to apply reinforcement learn-
ing techniques in HG implementation to train an optimal policy 
for a task. Scobee et al. [46] attempted to determine the underlying 
value function of each observation state of a steering task from 
the movement of an expert operator through the inverse reinforce-
ment learning method, and developed OAHG based on the trained 
value function. Meanwhile, the deep Q-network (DQN) was applied 
in [52] to train HG that minimizes the magnitude of the steering 
wheel angle during a steering task. These previous reinforcement 
learning-based HGs showed promising results, but had a limitation 
in that they cannot provide a perfectly optimal action because they 
were trained by data from very few (one or two) human operators. 
In this study, we trained an optimal action model for implementing 

OAHG by using a latest reinforcement learning framework based 
on self-play between AI agents only [3]. 

2.3 Implementing User Prediction-based HG 
Research on UPHG emerged later than research on OAHG and has 
received less attention. De Jonge et al. [10] presented UPHG accord-
ing to a reference trajectory adapted to each user based on his/her 
previous trial in a steering task, whereas OAHG utilized a fxed ref-
erence trajectory (i.e., center of the path). Their personalized UPHG 
demonstrated the positive efect of reducing the confict between 
the human operator and HG. Meanwhile, data-driven approaches 
have also been used to model a user’s movement. Hernández et 
al. [19] stochastically modeled each user’s individual movement 
based on a hidden Markov model (HMM) in a task of moving a 
virtual object to a target position avoiding obstacles, and presented 
UPHG to assist the user’s movement based on the user model. Pre-
vious studies such as [41] and [55] also presented HG based on a 
user movement model using HMMs in a surgical task environment. 

In this study, we implement a user model for UPHG based on deep 
neural networks. Such an approach has recently been highlighted 
for user modeling in HCI and HRI felds [32, 34, 39, 43]. To apply 
UPHG tailored for an individual user, it is necessary to learn on 
each individual’s data. However, collecting enough data to train 
the neural network-based model from scratch for every new user 
is very inefcient, particularly, when targeting numerous users. To 
solve this challenging problem, we apply a meta-learning approach, 
enabling the trained model to adapt the model parameters to a new 
user based on his/her short trial data, which is the frst attempt in 
UPHG implementation. 

3 HAPTIC GUIDANCE DESIGN 

3.1 Target Task Environment 
As a target task for the experimental investigation of various types 
of HG, we developed a virtual air hockey game environment that 
can be controlled using a haptic device (Figure 2(a)). In our air 
hockey game environment, a player competes with an opponent 
AI on a slippery surface by moving his/her paddle, which is used 
to hit a puck (Figure 2(b)). The player’s successful task execution 
is judged by how many times he/she wins against the opponent 
AI. The player wins a round if he/she succeeds in putting a puck 
into the opposing goalpost, whereas he/she loses the round if the 
opponent puts a puck in the player’s goalpost. Each paddle is set 
to move only within its own side (i.e., above or below the half-
line). The player’s paddle is controlled by a two-dimensional action 
vector, which corresponds to the desired paddle location on the 
xy coordinates with the midpoint of the player’s side as the origin 
(Figure 2(b)). The action vector has one-to-one correspondence with 
the position of the end efector of the haptic device. For intuitive 
control of the player, the end efector is also set to move only on 
the 2D plane, and the moving directions of the end efector and the 
paddle are matched (Figure 2(a)). 

A video game environment is suitable for comparing OAHG and 
UPHG in that each player can adopt various strategies according 
to his/her preference [22, 40] while having a common winning 
formula. A player’s basic strategy to win the air hockey game is to 
accurately smash the puck toward the opponent’s goal and defend 
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Figure 2: The air hockey game environment we developed. 
(a) Example of control based on a haptic device. (b) In-game 
screen and composition of our air hockey game. 

against the puck from the opponent heading inside the player’s goal. 
However, in a detailed process, players can have several choices. 
A player can smash along a path that goes directly toward the 
goal, or he/she can choose a path through one or two refections 
using the wall, avoiding the opponent’s paddle. In addition, in a 
defensive situation, that is, when the opponent has the puck, a 
player can press the opponent near the half-line to narrow the 
angle of attack or wait for the opponent’s attack right in front of 
the goal. We expect UPHG to predict the player’s choices in advance 
and assist him/her with the corresponding action, while OAHG 
informs him/her of the most optimal action he/she can choose. 

3.2 Optimal Action Model and User Prediction 
Model 

We implemented the following two models based on deep neural 
networks: 1) an optimal action model that outputs the most optimal 
action that a user can take and 2) a user prediction model that 
outputs the expected action to be selected by the current user. 
Because both models use the same type of input (i.e., current game 
state) and output (i.e., target action vector), we designed them to 
have the same structure but with diferent hyperparameters (i.e., 
depth and size of the hidden layer) that are fne-tuned for each 
model’s training. Each model was trained through diferent learning 
approaches based on reinforcement learning and meta-learning, 
respectively. 

3.2.1 Model Architecture. Figure 3 shows the structure of our 
model. The air hockey game state—the two-dimensional position 
and velocity vectors of two paddles and a puck (total, size of 12)—is 
mapped to the two-dimensional distribution data, which are the 
mean and standard deviation (STD) of the distribution of each xy 
coordinate of the action vector (total, size of 4). The output distri-
bution represents the distribution of the target action vector used 
to generate the guiding force (i.e., optimal action for OAHG or 
predicted action for UPHG). Notably, we designed the model to 
output the mean and STD of the distribution rather than a single 
action value. In our HG implementation, we utilize the mean of the 
distribution as a reference action to guide the users, and also con-
sider the model uncertainty which can be inferred from the STD of 
the distribution. Fully connected (FC) hidden layers with rectifed 
linear unit (ReLU) activation functions are present between the 

Figure 3: Overview of the model structure applied to both 
the optimal action model and the user prediction model. 

input and output nodes. We used grid search to determine the opti-
mal hyperparameters that exhibit the best learning performance in 
each training method; therefore, the depth and size of the hidden 
layers are diferent for the optimal action model and user prediction 
model: 2 × 64 and 4 × 80, respectively. The output STD goes through 
an additional sigmoid activation function. 

3.2.2 Optimal Action Model Training. Reinforcement learning tech-
niques have succeeded in acquiring an optimal policy that surpasses 
a human player in simulated video game environments [31, 48]. To 
train the optimal action model for our air hockey task, which is 
based on the competition between two players, we applied a latest 
learning framework based on self-play between two AI agents [3]. 
In this framework, a training agent of the frst generation initially 
confronts an opponent with random movements and updates the 
action model for increasing the expected reward. As the learning 
progresses, the training agent of the next generation competes with 
the agents of the previous generations, which also grow gradually, 
therefore the optimal action model can be progressively developed 
without human operator intervention. Meanwhile, the training 
agent updates the model using the sampled action from the ac-
tion distribution output of the model. Therefore, when the specifc 
action is confdently more optimal than other actions, the model 
will train to output a lower STD value, that is, the STD refects the 
model uncertainty at current state. 

For implementation details, trust region policy optimization 
(TRPO) [44] was used as the learning algorithm that updates the pol-
icy of the training agent, because it internally had the best learning 
performance for our air hockey task among the latest algorithms 
such as proximal policy optimization (PPO) [45] and soft actor-critic 
(SAC) [18]. Self-play-based procedural learning was performed over 
100 generations. Each generation was trained with a simulation of 
200K timesteps, and batch updates were applied every 5K timesteps. 

3.2.3 User Prediction Model Training. In utilizing the user predic-
tion model, we mainly focus on how to train the model to adapt to 
diferent users. Inspired by the fact that the existing meta-learning 
frameworks train models to quickly learn to perform new unseen 
tasks using only a few datapoints of each new task, we applied 
a meta-learning approach to train the user prediction model for 
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HG to quickly adapt to diferent users. We demonstrated in our 
prior study [33] that model-agnostic meta-learning (MAML) [14], a 
recent mainstream meta-learning algorithm, can be used to train a 
model that mimics user behavior for dynamic difculty adjustment 
and efectively adapts to a new user with his/her minimal demon-
stration data. In the current study, we present a user adaptation 
(UA) method that trains the user prediction model based on the 
MAML algorithm and updates the model parameters for each user. 
The training process of our user prediction model is as follows. The 
training data consists of a set of task execution data DU of diferent 
users U , and DU is divided into DU for model adaptation, anddemo 
DU for meta-update. First, the algorithm updates the model valid 
parameter θ by a single gradient descent that reduces L(θ , DU ),demo 
which is the model loss function for DU 

demo . Therefore, 

θU = θ − α∇θ L(θ , D
U (1)adapt demo ), 

where α denotes the inner learning rate. Subsequently, a meta-
update is performed to reduce model loss for DU using the valid
updated parameters. Overall, the objective of our meta-learning is 
as follows: Õ 

where N denotes the size of the training data D (i.e., DU ordemo 
DU ), subscript i indicates the i-th sample from D, yi is an actual valid 
action taken by a player at a game state xi , and ŷi and σ̂i are the 
predicted mean and STD output by feeding xi into the model with 
parameter θ . With this loss function, the model can be trained to 
output the STD that implies the uncertainty of the predicted action; 
that is, the lower the STD values, the more confdent the model is 
about the prediction. 

For the user prediction model training, we collected data from 
nine participants aged between 22–29 (mean=25.33, STD=2.16) 
while performing the air hockey task without haptic guidance. 
Each participant was provided sufcient practice time to be familiar 

another user prediction model in a typical supervised manner, ex-
cluding the meta-learning approach, employing the same dataset 
used in the training with UA. In this case, the model trained without 
UA will predict generalized user movement because it is trained 
to use fxed network parameters for various user behaviors. An 
Adam optimizer with a learning rate of 0.001 was used and the 
batch size was 1K timesteps. The entire training was conducted for 
100 epochs. 

3.3 Generating HGs Based on Trained Models 
The trained models output the target action for assisting the user’s 
task. A straightforward and reliable approach to generate HG is 
to implement a spring force toward the target action so that users 
can match their actions accordingly [10, 15, 35, 46]. Meanwhile, 
one of the important implications from the previous studies on 
HG implementation is that a human operator cannot respond to 
HG immediately. Accordingly, a lookahead method [15] where HG 
should be proactively applied based on a slight future game state, 
considering the reaction time of a human, has been applied as a 
common technique. Following the method described in [15], we 
used the anticipated game state xlookahead , which is obtained by

L(θU (2)adapt , D v
U
alid ).min virtually moving the puck and paddles with the current velocity for 

U a short time Tlookahead , instead of the current game state x as the
Through this two-fold backpropagation, the user prediction model 
eventually learns to rapidly adapt to unseen users. Meanwhile, we 
aim to train the model to output the STD of the predicted action 
distribution, which is impossible with the mean-squared error loss 
function commonly used in general regression learning. Inspired 
by a previous work [24] that modeled uncertainty in deep learning 

model input. Therefore, the guiding force of our OAHG and UPHG 
is generated by the following equation: 

FHG = clip(−K(u − ŷ)), (4) 

where K is the stifness gain, u is the user’s current action vector, 
and ŷ is the mean of the target action vector distribution obtained 
by feeding xlookahead into the model. A clipping function was 

models for computer vision tasks, we use the following loss function 
to train our user prediction model: 

1 1 1 

σi ∥2 ∥yi − ŷi ∥2 + log ∥σ̂i ∥
2 

2∥ ˆ 2 

Õ applied to make the guiding force bounded, because momentary 
, (3) excessive force may induce safety problems to the user.L(θ , D) = 

N (xi ,yi )∈D 
Additionally, we propose an uncertainty-based thresholding (UT) 

method that adjusts the magnitude of HG by considering model 
uncertainty. The importance of model uncertainty has been recog-
nized in several previous pHRI studies [17, 19, 23], as the results 
from inaccurate models of robot or human movements can lead 
to human discomfort or safety issues during human–robot collab-
orations. We infer the model uncertainty at a specifc state from 
the STD of the target action; that is, if the output STD is large, 
the model at current state is judged to be highly uncertain. Using 
this, we defned the uncertainty weight according to the squared 
magnitude of the STD as follows: 

1, if ∥σ̂ ∥2 < Tlow 
  

 

Thiдh −∥σ̂ ∥2 

, (5)Thiдh −Tlow 
if Tlow ≤ ∥σ̂ ∥2 < Thiдh 

0, otherwise, 
with the task prior to data collection. A total of 360K timesteps of Wunc = 
recorded behavioral data were employed to train the user predic-
tion model. During our meta-learning process, the adaptation was 
conducted with an inner learning rate of 0.1, and the meta-update where σ̂ is the output STD, and Tlow and Thiдh are threshold values. 
was conducted using an Adam optimizer with a learning rate of 
0.001. The batch size of DU and DU was 1K timesteps, anddemo valid
the entire training was conducted for 200 epochs. 

To verify the practical efectiveness of the UA method, in a subse-
quent user study, we experimentally compared the performance of 
two UPHGs based on models trained with and without UA. For the 
UPHG implementation without using the UA method, we trained 

With the UT method, calculated FOAHG or FU PHG from (4) is 
multiplied by the uncertainty weight, which ranges from 0 to 1, 
and then provided to users. In other words, only when the STD 
is less than a certain level (i.e., Thiдh ), we determine the HG to 
be confdent in its purpose and can assist the users. Figure 4(a) 
summarizes the process of generating OAHG and UPHG, including 
the UT method. 

https://STD=2.16
https://mean=25.33
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Table 1: Proposed methods applied to our HG implementation. 

Abbrev Full Form OAHG UPHG CombHG 

UT Uncertainty-based thresholding ✓ ✓ ✓ 
UA User adaptation ✓ ✓ 
SC Similarity-based combination ✓ 

✓A checkmark indicates whether it was used for the corresponding HG type. 

A straightforward approach to implement CombHG is to use 
the average of two guiding force vectors from OAHG and UPHG, 
therefore make the user to be assisted by both HG types simultane-
ously. This approach is intuitive in that the combined HG guides the 
user to the midpoint between the two target actions to be guided 
by OAHG and UPHG. Accordingly, we implement the simplest 
CombHG as follows: 

FCombHG = (FOAHG + FU PHG )/2. (6) 

However, simply taking the average of two guiding forces may 
worsen the results, guiding the user to an unintended third direction 
if the two HGs have diferent directions. To solve this problem, we 
propose a conservative combination method, namely similarity-
based combination (SC), that considers the similarity of two HGs 
based on the angle between the two guiding forces and reduces 
the magnitude of HG when the similarity is low. The main purpose 
of the SC method is to provide an appropriate guiding force only 
when the target action is optimal and meets the user’s intention, 

Figure 4: The process of implementing (a) optimal action-
based haptic guidance (OAHG) and user prediction-based 
haptic guidance (UPHG), and (b) combined haptic guidance 
(CombHG). The three proposed methods (i.e., UT, UA, and 
SC), whose efectiveness is investigated through a subse-
quent user experiment, are highlighted in gray shades. 

that is, when the directions of the two HGs match. To do this, we 
defne the similarity weight as follows: 

Wsim = cos2(ϕ/2), (7) 

where ϕ is the angle between the two guiding forces according 
to OAHG and UPHG. The similarity weight ranges from 0 to 1, 
which corresponds to the angle ϕ from π (opposite direction) to 
0 (matched direction). With the SC method, FCombHG from (6) is 
provided to the user after multiplying by the similarity weight. 
Figure 4(b) shows the implementation of CombHG using OAHG 
and UPHG, including the SC method. 

4 USER STUDY DESIGN 

4.1 Research Questions 
The objective of this research is divided into two main parts: a 
presentation of the implementation methods for three types of HG, 
that is, OAHG, UPHG, and CombHG, and an experimental inves-
tigation into how each type of HG difers in the context of user 
acceptance. We implemented the HGs by generating a guiding force 
based on the real-time output of the optimal action model and the 
user prediction model we trained. To achieve better performance of 
HG, we applied the three proposed methods (i.e., UT, UA, and SC), 
according to the HG type specifed in Table 1. To aid future HG stud-
ies, this user study frst aims to experimentally confrm whether 
the methods actually lead to a HG performance improvement. Sub-
sequently, by using HGs to which all the applicable methods are 
employed, we determine whether each HG assists users when com-
pared to a no HG (NHG) condition. Further, we investigate how 
the three types of HG assist users diferently in terms of objective 
and subjective evaluations, which is our primary research objective. 
Therefore, we formulate the following four research questions: 

• RQ1: Do the UT, UA, and SC methods that we propose and 
apply to the HG implementation contribute to an improve-
ment in HG performance? 

• RQ2: Do OAHG, UPHG, and CombHG improve users’ task 
performance when compared to NHG? 

• RQ3: What diferences do OAHG and UPHG have in users’ 
objective and subjective evaluations? 

• RQ4: Can CombHG, which integrates OAHG and UPHG, 
complement each HG or provide better efects in users’ ob-
jective and subjective evaluations? 

4.2 Experimental Method 
We conducted an indoor laboratory experiment to measure the 
actual assisting performance of the implemented HGs. We recruited 
20 participants (4 females and 16 males) aged between 21–30 (mean= 
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Figure 5: Experimental setup of our user study. A participant 
performs a virtual air hockey task with a haptic device. 

25.58, STD=2.09) for this user study. All participants were right-
handed, and none of them reported perception defects in their 
vision and touch. 

Figure 5 presents the experimental setup. The air hockey task 
environment was composed of a haptic interface device (Omega.7, 
Force Dimension) and a 24-inch monitor, which were connected 
to a PC. Each participant was instructed to sit down and perform 
the air hockey task by holding the end efector of the haptic device 
with his/her dominant hand. 

We selected HGs under the following nine conditions for the 
user experiment for verifying the efectiveness of the HG imple-
mentation methods (RQ1) and comparing the efect of each HG 
type (RQ2–RQ4): 

(a) NHG: no haptic guidance. 
(b) OAHG (vanilla): OAHG from Equation (4) with no addi-

tional method. 
(c) OAHG (UT): OAHG applying the uncertainty-based thresh-

olding in addition to OAHG (vanilla). 
(d) UPHG (vanilla): UPHG from Equation (4) using a model 

not trained with the meta-learning algorithm, and therefore 
without the user adaptation. 

(e) UPHG (UA): UPHG from Equation (4) using a model trained 
with the meta-learning algorithm (i.e., UA applied). 

(f) UPHG (UT+UA): UPHG applying the uncertainty-based 
thresholding in addition to UPHG (UA). 

(g) CombHG (UA): CombHG from Equation (6) based on 
OAHG (vanilla) and UPHG (UA). Note that because the basic 
concept of UPHG is assisting a user according to personal-
ized prediction, we use UPHG (UA) instead of UPHG (vanilla) 
to implement the underlying CombHG. 

(h) CombHG (UA+SC): CombHG applying the similarity-
based combination on OAHG (vanilla) and UPHG (UA). 

(i) CombHG (UT+UA+SC): CombHG applying the similarity-
based combination on OAHG (UT) and UPHG (UT+UA). 

Our experimental procedure is as follows. First, all participants 
were informed that they would experience nine diferent HGs, and 
interviews would be conducted about their impressions received 

from each HG, immediately after experiencing each HG. Second, 
each participant was provided with as much practice time as he/she 
wanted to be familiar with the task environment. Third, for the 
purpose of updating the user prediction model parameters (i.e., UA), 
each participant performed one game in the NHG condition, which 
was not refected in the evaluation. One game basically consists of 
seven rounds (one round ends when either a player or an AI scores 
a goal), but if it ends earlier than the minimum play time that we 
set (two minutes per task), up to three additional rounds proceed 
to secure more data from the player. After completing UA with the 
recorded data, that is, updating the parameters of the user prediction 
model through Equation (1), the participant sequentially performed 
all nine HG conditions in a random order with counterbalancing. All 
participants performed one game for each HG condition, and before 
the start of each game, they were allowed 30 seconds to adapt to 
the given HG, which was not refected in the evaluation. Following 
the end of each game, participants assessed the subjective scores 
for the HG they had just been assisted with, and a short interview 
with a supervising researcher was conducted. All participants were 
able to rest as much as they wanted between each game. The total 
duration of the experiment was between 1–1.5 hours, depending 
on the participants. 

4.3 Measured Variables and Metrics 
We measured the assisting performance of each HG condition in 
terms of objective metrics automatically measured by the system 
and subjective metrics based on participants’ evaluations. Four 
objective metrics were used: win rate, mean smash speed, and 
defense rate, which indicate the degree of high task performance; 
and mean disagreement, which indicates the degree of high confict 
between a user and HG. The metrics are defned as follows: 

• Win rate: the ratio of the participant winning the opponent 
in one game (7–10 rounds). 

• Mean smash speed: the average speed of the puck hit by 
the participant over the opponent’s side (i.e., smashed). Note 
that, the speed was measured in relative fgures because the 
air hockey task was built in a virtual environment without 
specifc units. 

• Defense rate: the proportion of the pucks blocked by the 
participant among the pucks headed into the participant’s 
goal. 

• Mean disagreement: the average of the disagreement be-
tween the participant and HG, which is proposed in [19] 
and defned as follows (∆u denotes the user’s action change 
during a timestep after receiving HG).  HG ·∆u− 

FT 

, if FT · ∆u < 0
∥∆u ∥ HG disaдreement = 0, otherwise. 

For the subjective evaluation, we selected the following four 
items and asked the participants to rate each HG condition in terms 
of the items on a 7-point Likert score: 

• Helpfulness: how much the participants felt the HG helped 
them perform the task. 

• Naturalness: how natural the participants felt the assis-
tance of the HG. 

https://STD=2.09
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Figure 6: Experimental results of the objective (top) and subjective (bottom) metrics for the nine HG conditions (a)–(i). The 
HG conditions of the same HG type are indicated by bars of the same color. Error bars represent 95% confdence intervals. 

• Controllability: how well the participants felt they were 
able to control the paddle under the HG. 

• Comfort: how comfortable the participants were with the 
assistance of the HG. 

5 RESULTS 
Figure 6 shows the objective and subjective evaluation results for 
each HG condition. To answer RQ1, we frst investigated how as-
sisting performance varies according to implementation methods 
within each HG type. Next, we examined how each HG type pro-
vides diferent assistance for the user (RQ2–RQ4), using the results 
of the HG conditions to which all applicable implementation meth-
ods were employed, that is, OAHG (UT), UPHG (UT+UA), and 
CombHG (UT+UA+SC). 

5.1 Comparison Within HG Types 
We frst compared the evaluated results of the two conditions within 
the OAHG type according to the implementation methods (i.e., 
vanilla vs. UT). A paired t-test revealed that the use of the UT 
method in the OAHG type signifcantly reduces the participants’ 
mean disagreement (t = 12.143, p < .001). On the other hand, no 
signifcant diference was found in the remaining seven metrics 
between the OAHG (vanilla) and OAHG (UT) conditions. 

To compare the three conditions within the UPHG type (i.e., 
vanilla, UA, UT+UA), a repeated measures ANOVA with a Green-
house-Geisser correction was used. The analysis revealed that there 
were signifcant efects of the UPHG implementation methods on 
the following metrics: win rate (F2,38 = 6.430, p = .004, η2 = .253), 
mean disagreement (F2,38 = 19.856, p < .001, η2 = .511), helpful-
ness (F2,38 = 3.422, p = .044, η2 = .153), naturalness (F2,38 = 5.156, 
p = .013, η2 = .213), controllability (F2,38 = 10.188, p = .001, 
η2 = .349), and comfort (F2,38 = 7.012, p = .006, η2 = .270). 

However, there was no signifcant efect on the mean smash speed 
and defense rate. For the metrics with signifcant efects, we con-
ducted post hoc tests with a Bonferroni correction to investigate a 
signifcant mean diference between the conditions. Table 2 summa-
rizes the comparisons of the conditions in which signifcant mean 
diferences exist (i.e., p < .05). According to the analysis, the use of 
methods such as UA and UT contributed individually or together 
to improve objective evaluations (e.g., an increase in win rate and a 
decrease in mean disagreement) and subjective evaluations (e.g., an 
increase in helpfulness, naturalness, controllability and comfort) 
from participants. 

We also conducted a repeated measures ANOVA with a Green-
house-Geisser correction to compare the results of the condi-
tions representing the three implementation methods within the 
CombHG type (i.e., UA, UA+SC, and UT+UA+SC). There were sig-
nifcant efects of the implementation methods on the following 
metrics: mean smash speed (F2,38 = 5.733, p = .011, η2 = .232), 
mean disagreement (F2,38 = 79.038, p < .001, η2 = .806), helpful-
ness (F2,38 = 3.295, p = .049, η2 = .148), naturalness (F2,38 = 7.883, 
p = .002, η2 = .293), controllability (F2,38 = 5.607, p = .008, 
η2 = .228), and comfort (F2,38 = 4.057, p = .027, η2 = .176). How-
ever, there was no signifcant efect on win rate and defense rate. 
Post hoc tests with a Bonferroni correction were also conducted, 
and comparisons between conditions with signifcant mean dif-
ferences are summarized in Table 2. Similar to the analysis of the 
UPHG type, the post hoc analysis indicated that the methods we 
present for CombHG (i.e., UT and SC) contribute to improving the 
objective and subjective aspects of assisting performance for users. 

5.2 Comparison of HG Types 
To compare the assisting performance between HG types, we 
used the OAHG (UT), UPHG (UT+UA), and CombHG (UT+UA+SC) 
conditions, which showed the best assisting performance for each 
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Table 2: Comparisons showing statistically signifcant diferences between implementation methods within HG type. 

Type Metrics Comparison p Type Metrics Comparison p 

OAHG Mean disagreement (b) > (c) .000 CombHG Mean smash speed (i) > (g) .003 
UPHG Win rate (f) > (d) .009 (i) > (h) .028 

Mean disagreement (d) > (f) .000 Mean disagreement (g) > (h) .000 
(e) > (f) .000 (g) > (i) .000 

Helpfulness (e) > (d) .041 (h) > (i) .000 
Naturalness (f) > (d) .032 Helpfulness (i) > (g) .023 
Controllability (e) > (d) .028 Naturalness (i) > (g) .001 

(f) > (d) .004 (i) > (h) .043 
Comfort (f) > (d) .001 Controllability (i) > (g) .009 

Comfort (i) > (g) .023 

HG type in Section 5.1. Hereafter, the above three conditions will 
represent each HG type. A repeated measures ANOVA with a 
Greenhouse-Geisser correction was conducted to determine the 
efect of HG types (i.e., NHG, OAHG, UPHG, and CombHG) on 
each metric. As an exception, since mean disagreement cannot be 
calculated under the NHG condition, the analysis for mean disagree-
ment was conducted only between the other three HG types. The 
ANOVA analysis revealed that the HG type has a signifcant efect 
on all metrics and statistical values of each metric are as follows: 
win rate (F3,57 = 8.112, p < .001, η2 = .299), mean smash speed 
(F3,57 = 5.740, p = .002, η2 = .232), defense rate (F3,57 = 3.014, 
p = .041, η2 = .137), mean disagreement (F2,38 = 13.586, p < .001, 
η2 = .417), helpfulness (F3,57 = 8.614, p < .001, η2 = .312), nat-
uralness (F3,57 = 30.107, p < .001, η2 = .613), controllability 
(F3,57 = 30.083, p < .001, η2 = .613), and comfort (F3,57 = 7.108, 
p = .001, η2 = .272). Post hoc tests with a Bonferroni correction 
were conducted to fgure out whether HG type pairs had a sta-
tistically signifcant diference, and the results are summarized in 
Table 3. 

Based on the post hoc analysis, we can conclude the following: 
All three HG types, that is, OAHG, UPHG, and CombHG, led to 
signifcantly higher win rates of participants than NHG, which 
demonstrates the objective efectiveness of the HGs presented in 
this study. Specifcally, CombHG induced a signifcantly higher 
mean smash speed than NHG, while OAHG induced a signifcantly 
higher defense rate than NHG. UPHG also induced a marginally 
higher smash speed than NHG, but it was not statistically signif-
icant (p = .073). Meanwhile, CombHG showed a lower mean dis-
agreement than both UPHG and OAHG. In terms of the subjective 
metrics, UPHG and CombHG scored signifcantly higher in help-
fulness than NHG, whereas OAHG did not. UPHG and CombHG 
received similar levels of subjective evaluation from participants, 
scoring signifcantly better than OAHG for the remaining three 
metrics, that is, naturalness, controllability, and comfort. NHG re-
ceived the highest scores in naturalness and controllability, but 
this can be interpreted as an inevitable result of not exerting any 
artifcial force on the users. 

6 DISCUSSION 
We summarize the fndings of this paper as answers to our research 
questions based on the analysis results and comments from the 

user interviews. In addition, we discuss the implications of our HG 
design regarding its generalization and utilization outside of the 
air hockey environment. 

6.1 Answers to Research Questions 
RQ1: Do the UT, UA, and SC methods that we propose and apply to 
the HG implementation contribute to an improvement in HG perfor-
mance? 

The experimental results showed that the three methods pro-
posed in this study contributed to the enhancement of the assisting 
performance in several metrics. First, the application of UT led to a 
reduction in mean disagreement for all HG types. This can be ex-
plained by the fact that the confict between HG and a user because 
of an inaccurate model output, that is, with a high uncertainty, was 
efectively prevented by the uncertainty weight. The user inter-
views provided more details. Five participants (P6, P7, P11, P12, and 
P17) commented on OAHG (vanilla) that “The interference of the 
guidance was excessive,” but only two participants (P8, P11) made 
such comments on OAHG (UT). A similar tendency was observed 
for UPHG. When comparing cases of non-applied and applied UT 
(i.e., UPHG (UA) vs. UPHG (UT+UA)), the number of participants 
commenting that “The interference frequency of the guidance was 
appropriate” increased from zero to fve (P7, P10, P16, P17, and P20). 

On the other hand, the application of UA improved the users’ 
evaluation of helpfulness and controllability. Moreover, when UA 
worked with UT on UPHG, there were enhancements in win rate, 
naturalness, and comfort when compared to UPHG (vanilla). This 
enhancement can be explained by UA providing the efect of ad-
justing HG to suit an individual user’s playstyle, as we intended. 
In the interviews, three participants (P7, P8, and P13) reported on 
UPHG (UA) that, “The guidance understood my ofensive and defen-
sive intentions,” whereas no one reported this on UPHG (vanilla). 

The application of SC reduced the mean disagreement, which 
is similar to the efect of UT. This can be explained by the fact 
that the HG was fully delivered to the user only when OAHG and 
UPHG have a matched direction, thereby reducing the degree of HG 
interference. Note that there was no deterioration in other metrics, 
even though the HG interference was controlled this way. Rather, 
when SC worked with UT on CombHG (i.e., CombHG (UT+UA+SC)), 
the mean smash speed and all subjective evaluations were enhanced 
when compared to CombHG (UA). This suggests that users may 
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Table 3: Comparisons showing statistically signifcant diferences between HG types. 

Metrics Comparison p Metrics Comparison p 

Win rate OAHG > NHG .014 Naturalness NHG > OAHG .000 
UPHG > NHG .002 NHG > UPHG .025 

CombHG > NHG .001 UPHG > OAHG .001 
Mean smash speed CombHG > NHG .023 CombHG > OAHG .000 

CombHG > OAHG .045 Controllability NHG > OAHG .000 
Defense rate OAHG > NHG .038 UPHG > OAHG .000 
Mean disagreement OAHG > CombHG .000 CombHG > OAHG .000 

UPHG > CombHG .002 Comfort UPHG > OAHG .003 
Helpfulness UPHG > NHG .009 CombHG > OAHG .001 

CombHG > NHG .001 

prefer to reduce such unnecessary HG interference. A remark from 
P3 to CombHG (SC+UA), “It felt positive that the guidance assisted 
me only when I needed it,” can supplement this. 

Furthermore, we analyzed the distribution of Wunc and Wsim 
used in the UT and SC methods to determine the degree to which 
each method adjusted the guiding force to improve the HG perfor-
mance. First, we calculated the mean and STD of the distribution 
of each weight within the same game. After averaging the mean 
and STD values over all games executed, the distribution (mean ± 
STD) of Wunc for OAHG and UPHG were 0.600 ± 0.390 and 0.751 
± 0.306, respectively. Because a lower weight implies a stronger 
decrease in guiding force, the result indicated that the UT method 
more aggressively controlled the guiding force for OAHG than for 
UPHG. Meanwhile, the distribution of Wsim was measured as 0.515 
± 0.343. 

RQ2: Do OAHG, UPHG, and CombHG improve users’ task perfor-
mance when compared to NHG? 

In the user experiment, all three types of HG led to a signifcantly 
higher win rate for users than NHG, which clearly indicates that 
the user’s haptic task performance was improved by the guiding 
force. The specifc diferences in assisting performance between 
the HG types are discussed in more detail in RQ3 and RQ4. 

RQ3: What diferences do OAHG and UPHG have in users’ objec-
tive and subjective evaluations? 

There was no signifcant diference in participants’ win rates 
between OAHG and UPHG. However, diferences between the two 
HG types were revealed in other objective metrics. OAHG induced 
a signifcant increase in defense rate, whereas UPHG induced a mar-
ginal increase in mean smash speed when compared to NHG. This 
tendency was also observed in the user interviews. Six participants 
(P1, P2, P3, P5, P6, and P19) commented on OAHG that “The guid-
ance helped to defend the puck toward our goal,” which is the highest 
number among the other HG types. P6 additionally mentioned that 
“It pinpointed the spot to be blocked for important defense,” which 
indicates that OAHG reinforced the user’s insufcient defensive 
ability. On the other hand, the most frequent comment participants 
(P1, P3, P4, P7, P10, P13, P15, and P20) mentioned about UPHG was 
that “The guidance assisted me in the direction I am moving,” which 
may induce an increase in the smash speed. This can be explained 
as the trained user prediction model could easily expect the user to 
continue to move in a direction when he/she starts moving, thereby 

providing an assisting guidance in that direction. Furthermore, P3 
remarked that, “It informed me where to stop smashing during the 
smashing process, so I was able to smash stable,” which indicates 
that UPHG assisted the user’s smashing motion rather than simply 
accelerating in the moving direction. 

In subjective metrics, user evaluation of OAHG and UPHG ex-
hibited a clear diference. UPHG was evaluated to be signifcantly 
higher in most metrics, that is, in naturalness, controllability, and 
comfort, and marginally higher in helpfulness, when compared 
to OAHG. We looked for the cause of this one-sided subjective 
evaluation in the user interviews. Participants mentioned several 
negative comments on OAHG as follows: “In an ofensive situation, 
the guidance over-asserted its intention” (P5, P7, P9, P11, and P17); 
“It followed the puck too hard” (P3, P10, P11, P13, and P15); “It did not 
ft my intention sometimes” (P13, P14, P19, and P20). P3 remarked in 
detail, “When the puck was on the opponent’s side, I wanted to wait, 
but the guidance preferred to move from side to side along the puck.” 
These comments indicate that, even if the behavior suggested by 
OAHG is optimal, it could inconvenience the users when it does 
not match their intentions. On the other hand, it can be seen that 
UPHG received higher subjective evaluations in that it did not harm 
the intention of the participants. P7 remarked on UPHG, “When I 
wanted to stay still, I could stay still, and when I tried to move toward 
the puck, I was assisted,” and fve participants (P7, P10, P16, P17, and 
P20) also positively commented that “The interference frequency of 
the guidance was appropriate.” Meanwhile, there was also a skep-
tical view on UPHG. P13 mentioned that “I tried to stop in front 
of the puck, but as I was assisted in the direction of movement, it 
moved further and touched the puck,” indicating that an occasional 
inaccurate guidance could induce user’s inconvenience. 

RQ4: Can CombHG, which integrates OAHG and UPHG, comple-
ment each HG or provide better efects in users’ objective and subjective 
evaluations? 

CombHG signifcantly lowered the mean disagreement than 
OAHG and UPHG, without reducing other objective and subjective 
metrics. This implies that CombHG succeeded in assisting users 
with less interference by efectively combining OAHG and UPHG. 
In detail, CombHG received a positive comment from six partic-
ipants (P1, P3, P6, P13, P16, and P20), the highest number along 
with OAHG, that “The guidance helped to defend the puck toward our 
goal.” Additionally, it also scored high subjective evaluations along 
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with UPHG. Several user comments can summarize the advantages 
of CombHG. P3 remarked on CombHG that “The guidance was ac-
tively helping me in the defensive situation and allowing me attack 
freely in the ofensive situation, which felt ideal for me to play.” P19 
also mentioned, “I felt like the guidance was chasing the puck but 
giving me a choice to attack.” Through these interviews, we judged 
that CombHG satisfed participants by providing adequate guid-
ance in situations where it is necessary (e.g., defense against the 
fast-approaching puck) and ensuring participants’ autonomy in 
situations where various strategies are possible. 

6.2 Generalization 
The proposed OAHG and UPHG implementation methods (i.e., UT 
and UA) are applicable to other pHRI tasks if the optimal action and 
user behavior for the given task can be modeled as any neural net-
work structure that receives the task state as input and outputs the 
action distribution (e.g., Figure 3). Because the UT method utilizes 
Wunc calculated using Equation (5) based on the output STD from 
the model, it is applicable to any neural network structure that out-
puts the STD of the action distribution. Because the UA method is 
based on the parameter update of the MAML with the user demon-
stration data (Equation (1)), it is applicable to any neural network 
structure that can be trained by the MAML algorithm. Therefore, 
our framework is not limited to the video game, but it can be easily 
extended to other pHRI tasks because data-driven modeling of the 
optimal action or user behavior has been successfully demonstrated 
in various HG scenarios (e.g., robot-assisted surgery [41, 55] and 
steering task [46]). To model the optimal action, we can either apply 
reinforcement learning in simulated environments, which is not 
limited to the self-play-based learning, or use the movement of 
skillful experts as in [5, 38, 51]. To model the user behavior, we can 
apply the MAML algorithm utilizing sufcient motion data from 
multiple users. 

In addition, our CombHG implementation method (i.e., SC) is fur-
ther general because it is not limited to the specifc implementation 
methods of OAHG and UPHG. Any OAHG and UPHG implemen-
tations (e.g., the traditional OAHG method using a fxed reference 
path [15]) can be combined by the SC method because it requires 
only the similarity of guiding force vectors from OAHG and UPHG. 

7 CONCLUSION 
In this paper, we proposed deep learning-based novel implemen-
tation methods for OAHG and UPHG, applying a self-play-based 
reinforcement learning framework for OAHG and a meta-learning 
framework for UPHG to achieve their best performance. Further, 
we proposed CombHG that aimed to complement each HG type and 
provide better performance than OAHG and UPHG. In detail, the 
three proposed implementation methods (i.e., UT, UA, and SC) were 
applied to the given problem and demonstrated clear performance 
enhancement. Through the user study, we validated the assisting 
performance of each HG for users conducting a haptic task and 
investigated the diference in the user’s subjective evaluation for 
each HG. The user study results indicated that UPHG and CombHG 
elicited signifcantly better subjective scores than OAHG. In addi-
tion, CombHG exhibited a further decrease in user disagreement 
compared to OAHG and UPHG, without reducing any objective and 

subjective scores. The comparison of each HG type based on our 
experimental analyses and user interviews can suggest the criteria 
for general HG design based on the aspects of HG that positively or 
negatively afect users. Considering that the generalization of the 
proposed HG implementation methods for other HG applications 
is straightforward, our fndings are expected to contribute to the 
design of other HG-based pHRI applications beyond the video game 
environment considered in this study. 
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