
Speeding up Inference with User Simulators through
Policy Modulation

Hee-Seung Moon
Yonsei University

Seungwon Do
ETRI

Wonjae Kim
NAVER AI Lab

Republic of Korea Republic of Korea Republic of Korea
hs.moon@yonsei.ac.kr seungwon.do@etri.re.kr wonjae.kim@navercorp.com

Jiwon Seo∗ Minsuk Chang∗ Byungjoo Lee∗
Yonsei University NAVER AI Lab Yonsei University
Republic of Korea Republic of Korea Republic of Korea

jiwon.seo@yonsei.ac.kr minsuk.chang@navercorp.com byungjoo.lee@yonsei.ac.kr

ABSTRACT
The simulation of user behavior with deep reinforcement learn-
ing agents has shown some recent success. However, the inverse
problem, that is, inferring the free parameters of the simulator from
observed user behaviors, remains challenging to solve. This is be-
cause the optimization of the new action policy of the simulated
agent, which is required whenever the model parameters change, is
computationally impractical. In this study, we introduce a network
modulation technique that can obtain a generalized policy that
immediately adapts to the given model parameters. Further, we
demonstrate that the proposed technique improves the efciency
of user simulator-based inference by eliminating the need to ob-
tain an action policy for novel model parameters. We validated
our approach using the latest user simulator for point-and-click
behavior. Consequently, we succeeded in inferring the user’s cogni-
tive parameters and intrinsic reward settings with less than 1/1000
computational power to those of existing methods.

CCS CONCEPTS
• Human-centered computing → User models; • Computing
methodologies → Reinforcement learning.

KEYWORDS
simulation model, inverse modeling, point-and-click

ACM Reference Format:
Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang,
and Byungjoo Lee. 2022. Speeding up Inference with User Simulators
through Policy Modulation. In CHI Conference on Human Factors in Com-
puting Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM,
New York, NY, USA, 21 pages. https://doi.org/10.1145/3491102.3502023

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3502023

1 INTRODUCTION
User performance is a foundational factor when designing inter-
faces. If we can predict user performance over variations of inter-
faces through mathematical modeling, it will allow designers to
rapidly evaluate, or even optimize, the interfaces. Advances in ma-
chine learning techniques and the increase in computational power
over the past decade have opened new opportunities in research
on user performance modeling, allowing researchers to address the
high dimensionality, variability, and adaptability of human behav-
ior. In particular, studies on simulation models of user performance
have made signifcant progress in recent years. Simulation models
attempt to explain the user’s behavior as an integrated system of
several sub-processes; therefore, they have a much larger number
of model parameters than traditional user performance models and
can beneft from the recent development of computational tech-
niques. In recent studies, simulation of button pressing [50], point-
and-click [19], typing behavior [31], layout learning [32], menu
search [15], and mid-air movement [14, 23] are good examples of
new possibilities for modern user simulation modeling.

Similar to the other models, the simulation model can be used in
two ways. The frst is generative use, predicting the variables of an
interaction in which we are interested. This is similar to how Fitts’
law [24, 69] can provide insight into interface design by predicting
the user’s target selection time. Second, the simulation model is
used to infer user and interface characteristics by ftting the model
to the given interaction data. From this inverse modeling, the main
keyword of this study, we can estimate the free parameters of the
model that represent the user and interface characteristics [34].
For example, we can estimate the throughput and y-intercept by
ftting Fitts’ law to the target selection time data. By referring to the
obtained parameters, it was possible to optimize graphical user in-
terfaces [49] and evaluate the performance of pointing devices [20].

In general, simulation models have a signifcant number of free
parameters that have more explicit physical meaning because, un-
like traditional descriptive models, the mechanism behind user
behavior must be precisely reproduced as a combination of sub-
processes. For example, a simulation model of point-and-click be-
havior recently published by Do et al. [19] includes 15 free parame-
ters representing the characteristics of the user and the system, such
as signal-dependent motor noise [68], visual perception noise [72],
precision of internal clock [40, 77], click success reward, and click
failure penalty. Therefore, if we succeed in the inverse modeling of a

https://doi.org/10.1145/3491102.3502023
https://doi.org/10.1145/3491102.3502023
mailto:permissions@acm.org

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

simulation model, we can obtain other rich insights about users and
interfaces that are not possible with traditional performance mod-
els. However, inverse modeling using a modern simulation model
has not been widely attempted because of a signifcant technical
bottleneck, as described below.

The basic principle of inverse modeling is to determine the free
parameters of the model that best describe the given data. Con-
sequently, it is necessary to search for a high-dimensional free
parameter space and fnd the parameter set that maximizes the like-
lihood of the given data. The problem here is that, generally, when
the free parameters change, the simulated agent’s action policy must
also be updated [34]. Action policy is a decision-making function
that determines the action the agent will take in a specifc task sit-
uation. In modern user simulation models, the user’s action policy
is expressed by a neural network that directly maps a task state
to an action or one that predicts the utility of all available actions
(the latter is the so-called Q-network; however, for simplicity, both
are referred to as a policy network in this paper). The connection
weights of the policy network can be determined through compu-
tational techniques such as reinforcement learning on the premise
that the user has an optimal policy [26, 42], which takes several
hours to a few days with a normal computer [19]. Consequently, an
iterative search in the free parameter space becomes impractical.

In this study, we present a novel technique that can overcome
the bottleneck in the inverse modeling of user simulators. The core
of the technique is to obtain a generalized action policy of the
simulated user that can immediately refect changes in the free
parameters in simulations. Accordingly, we design a policy model
using a neural network architecture that can be conditioned (i.e.,
modulated) on the given free parameters of the simulator. More
specifcally, our policy model adapts its mapping function by mod-
ulating the intermediate feature values (i.e., hidden states) of the
network by feature-level concatenation or FiLM [54]. Consequently,
a user simulator equipped with our generalized policy model can
exhibit optimal behavior for any given free parameter (e.g., diferent
cognitive parameters or reward formulation). Therefore, the cost of
the iterative search for inverse modeling can be drastically reduced
because the trained user simulator can now adapt its behavioral
strategy with no further policy optimization.

We demonstrated our proposed technique using a point-and-click
task as an example, in which a state-of-the-art simulation model
was recently published [19]. Point-and-click involves the selection
of a distant target (stationary or moving) by controlling the cursor
with an indirect pointing device such as a computer mouse. To
perform a point-and-click task, users must visually perceive the
state of the cursor and target (visual perception), plan and execute
cursor movement (motor control), and decide when to perform a
click (click decision-making). It is also known that this process is
infuenced by the speed–accuracy bias instruction given to the user.
For example, a user’s point-and-click varies signifcantly between
asking them to click as fast as possible and to click as accurate
as possible [83]. In relation to these processes, we inferred the
following six free parameters of the state-of-the-art point-and-click
simulation model [19]: precision of visual speed perception (σv),
coefcient of signal-dependent motor noise (nv), precision of click
decision-making (cσ), reward weights for successful click (wsuccess),
motor efort (wefort), and elapsed time (wtime).

We conducted the inference process in two parts: (1) three re-
ward weights (i.e., wsuccess , wefort , and wtime) were inferred at the
population level, and then, (2) three cognitive parameters (i.e., σv ,
nv , and cσ) were inferred at the individual level. We implemented
simulation models equipped with our modulated action policy for
each part, enabling the inference with signifcantly reduced com-
putational cost. For each part, we evaluated the generalization
performance of our modulated action policy by verifying whether
our policy model can sufciently approximate the simulation re-
sults from multiple individually trained policy models. To evaluate
the inference performance, we collected point-and-click behavioral
data from 20 participants and measured the baseline values of their
cognitive parameters in controlled experiments. For the frst part of
the inference, we examined whether changes in the inferred reward
weights seem plausible according to the changes in the speed–
accuracy bias instruction given to the user. Consequently, we could
reasonably estimate the intrinsic reward settings of users. For the
second part, we examined the correlation between the inferred and
measured cognitive parameters of each participant. Consequently,
we showed that two of the three targeted cognitive parameters (σv
and cσ) could be estimated with a moderate level of coefcient of
determination (R2=0.50 for σv ; R2=0.61 for cσ). This inference at
the individual level with many users has been infeasible in previ-
ous studies. With our method of improving the efciency, the user
simulator-based inference, which previously required hundreds or
thousands of hours, is now accomplished in a few hours.

To the best of our knowledge, no study has inferred multiple
free parameters of reinforcement learning-based user simulators as
efciently as ours. We expect that our proposed technique can be
widely used in interface personalization, optimization research, and
recommendation system research. We released all these datasets as
open sources for future research1. The contributions of this study
can be summarized as follows:

• We proposed a generalized policy model implementation
method that can signifcantly improve the efciency of the
inverse modeling of a user simulator.

• We collected point-and-click behavioral data for multiple
users (N =20) and measured the baseline values of their cog-
nitive characteristics (i.e., visual perception noise, motor
noise, and precision of click decision-making). The dataset
is released as an open-source and can serve as a benchmark
dataset for user simulator-based inverse modeling studies.

• We demonstrated an inference process based on our pro-
posed method. We succeeded to infer multiple cognitive
parameters and intrinsic reward settings of users from their
point-and-click behaviors, even with signifcantly reduced
computational costs.

2 RELATED WORK

2.1 Simulation Model of User Behavior
Traditionally, user performance models have focused on the predic-
tion of aggregated performance variables that summarize interac-
tions over a period, such as trial completion time [2, 69], error rate
[79], accuracy [40], and precision [27]. Similar to the well-known

1https://github.com/hsmoon121/pnc-dataset

https://1https://github.com/hsmoon121/pnc-dataset

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Fitts’ law [24], such models exhibit high robustness in predicting
the user performance on target tasks; however, they cannot explain
the cognitive processes through which the user performs the task
over time. Conversely, simulation models of user behavior predict
not only the aggregated performance variables of traditional mod-
els but also how the state of the user will change over time [19].
Previous simulation models of user behavior frst appeared in the
1980s. GOMS [12] models predicted user behavior over time by
considering the individual execution time of each cognitive pro-
cess. Cognitive architectures, such as ACT-R [4] and EPIC [36],
enabled more sophisticated user simulation by modeling cognitive
mechanisms, such as memory retrieval or parallel operations of
perceptual-motor modules.

Previous user simulation approaches are limited in that they re-
quire precise descriptions of the user’s sub-behavior to accomplish
the sub-goals of the task (e.g., production rules), which were mostly
hand-coded by modelers. As an alternative to the hand-coded rules,
users’ sequential decision-making behavior can be modeled by
learning an action policy, which is a decision-making function that
determines the user’s action from the current task state. Such ap-
proaches build on the consensus that users behave to maximize
their expected utility [8, 26, 42, 52]. That is, a user’s behavior can be
assumed as optimal behavior within the possible behavioral space
bounded by human capabilities (e.g., cognitive characteristics). Re-
inforcement learning (RL) can be applied to achieve the optimal
behavior of an agent in an interactive environment, which is for-
mulated as a Markov decision process (MDP). In the MDP setting,
an agent can take action in the current state and observe a reward
and the next state, and through RL, the agent’s decision-making
strategy (i.e., an action policy) is optimized. Previous attempts have
been made to apply traditional RL methods (e.g., Q-learning) for
user simulations, such as simulating eye movement [70] or dialog
management [41]. However, the traditional RL methods are not
suitable for solving problems with high-dimensional state and ac-
tion spaces; therefore, the previous approaches were also limited
to addressing simple MDP problems.

In the era of deep learning, the use of neural networks and
reinforcement learning techniques has brought signifcant improve-
ments in fnding the optimal behavior of agents in a wide range of
tasks, from playing video games [45] to acquiring physics-based
motion skills [53]. In deep RL, an action policy is computed using
neural networks and becomes suitable to manage environments
with high-dimensional spaces. Therefore, simulation models have
recently begun applying deep RL to achieve user behavior in per-
forming complex human–computer interaction (HCI) tasks. Recent
approaches simulated user behavior as an integrated system of
sub-modules that refect human capabilities and an optimized ac-
tion policy that governs the operation of the modules. For example,
Cheema et al. [14] reproduced user behavior of performing a mid-air
pointing task by biomechanically modeling the human upper limb
and optimizing an action policy, which determines the joint torque,
to minimize fatigue of the upper limb and pointing error. Other re-
cent studies, such as user simulation of button pressing [50], touch
screen typing [31], menu search [15], visual search [33], layout
learning [32], reaching movement [23], and point-and-click behav-
ior [19], also exhibited a wide range of HCI situations in which the
RL-based approach can be used.

While the application feld of the modern simulation model
broadens, there is an open question as to how to efectively address
the wide variability of behavior across individual users. Individual-
level user models are expected to achieve better prediction per-
formance than a model ftted to the entire user pool [34, 46, 47].
However, in previous approaches, the implementation of individual-
level simulation models consumed time and computing resources
and thus was often impractical. This is because, if the free parame-
ters of the user simulator change (i.e., the behavioral space bounded
by human capabilities changes), the action policy of the simulated
user must be optimized. In this study, we aimed to solve this bottle-
neck to enable individual-level simulation. Our key approach is to
implement a generalized action policy that can refect the variations
in the simulated user’s behavioral or cognitive characteristics (i.e.,
the free parameters of the user simulator).

2.2 Policy Modulation Techniques
Changes in the free parameters of the user simulator can be consid-
ered as changes in the MDP formulation that the simulated agent
faces. Therefore, our attempt to generalize the action policy is to
solve a family of MDPs using a single policy network, which can
be interpreted as solving the following two types of RL problems.
First, if the cognitive characteristics of a simulated user change,
the probabilistic transition function between states of the MDP
changes accordingly. Therefore, training an action policy that can
respond to variations in cognitive characteristics can be regarded as
multi-task RL [37, 81, 82], which aims to train an agent’s policy to
operate in multiple task environments. Second, we consider the in-
trinsic reward formulation of a simulated user, which governs their
behavior in completing HCI tasks. Responding to the variations in
the simulated user’s reward formulation can be regarded as multi-
objective RL [1, 66, 80], which aims to generalize an agent’s policy
across several objectives in a task environment, thereby exhibiting
optimal behavior for any given objective condition.

To address these RL problems, a policy network should be mod-
ulated according to context parameters that contain information of
a given task or objective, thereby changing its mapping function
depending on the given context. Methods to modulate (or condition)
neural networks can be classifed into the following three levels:
The frst method involves simply including context parameters in
the input of the network (i.e., conditioning on the input). Rakelly
et al. [57] generalized the policy network over multiple tasks by
inputting the latent representation of the task identity (i.e., task
embedding) to the policy. Second, context parameters can be used
to condition the intermediate features (i.e., hidden state) of the net-
works. One method is to concatenate context parameters to the
hidden states (i.e., feature-level concatenation), as in recent studies
that adapt a single policy network to multiple objectives [1] or tasks
[87]. The hidden states can also be modulated by linear transfor-
mation (i.e., scaling and shifting) by relying on feature-wise linear
modulation (FiLM) [54]. In FiLM, a separate network (i.e., FiLM
generator) is trained with a primary network (e.g., policy network),
and context parameters are mapped to coefcients that scale and
shift the hidden states through the trained FiLM generator. Recent
RL studies have demonstrated that the use of FiLM can allow the
agent policy to be adjusted by task instructions [6] or adapted to

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

multiple task environments [76]. Finally, the weights of the net-
works can be entirely conditioned by given the context parameters.
A hypernetwork [29] is a structure that enables such weight-level
conditioning; that is, a secondary network (hypernetwork) takes a
conditioning input (context parameters) and produces the weights
of a primary network. In general, a hypernetwork entails more
parameter changes in a primary network compared to the previous
two conditioning levels; therefore, a higher modulation capacity at
the cost of higher computational complexity is expected. Owing to
its complexity, research on hypernetwork structure in the RL feld
is still underway; however, there are a few recent studies related to
the continual learning of task dynamics [30] or multi-agent RL [58].

Although approaches to implement RL-based simulation models
have become diverse, such policy modulation techniques have not
yet been introduced in the HCI feld. In this study, we propose
a method to implement a policy network of a simulation model
that can be modulated by varying the free parameters. Among
the three levels of modulations, we consider feature-level modula-
tion techniques (feature-level concatenation or FiLM) to provide (1)
enhanced modulation capacity compared to the input-level mod-
ulation and (2) more stability during optimization compared to
weight-level modulation. With the modulation techniques, our im-
plemented simulation model can immediately adapt its behavior to
any given free parameter.

2.3 Inverse Modeling for HCI Research
Inverse modeling of user simulation or performance models (i.e., in-
versely estimating the free parameters of the model from the given
interaction data) can provide rich insight into the interaction design
because the free parameters represent the characteristics of the user
and the interaction environment. Typically, inverse modeling can
be performed by loss minimization [21]. For example, we can devise
a function that calculates the discrepancy (e.g., root mean squared
deviation or χ2) between the model’s prediction and the given data,
and to determine the parameters of the model that minimize the
discrepancy (least-squares estimation). If the model includes more
advanced probabilistic processes, we can determine the parame-
ters of the model that maximize the likelihood of observing the
given dataset (maximum likelihood estimation, MLE). In addition to
these, if the likelihood function of a probabilistic model is difcult
to compute, simulation-based inference techniques such as approx-
imate Bayesian computation (ABC) [35] or Bayesian optimization
for likelihood-free inference (BOLFI) [28] can be applied.

Because traditional user performance models generally have a
small number of parameters and assume a simple stochastic process,
successful inverse modeling was possible based on least-squares es-
timation. For example, the free parameters of Fitts’ law or Steering
law have been estimated for diferent input devices [3, 5, 10, 56],
diferent body parts [38, 71], diferent operational biases [83, 85],
and users of diferent age groups [9, 84]. More complicated stochas-
tic models of user behavior include the drift-difusion model for the
reaction process [59] and Stocker’s model for speed perception [72].
Regarding the drift-difusion model, there is a study comparing the
strengths and weaknesses of various inverse modeling techniques
including MLE [60]. In the case of Stocker’s model, parameters were
estimated based on MLE in the original paper [72]. Eye movements

and movement of attention (EMMA) model [61] describes the move-
ment of gaze and visual attention, and the model parameters in the
original paper were manually tuned to mimic human data. This
hand-tuned MLE is also frequently observed in more advanced sim-
ulation models such as ACT-R [25, 62–64], which clearly shows that
computational techniques for inverse modeling of user simulators
have not been widely attempted until the early 2000s [34, 78].

Recently published RL-based simulation models on user behav-
ior [14, 15, 19, 32] have approximately 10 free parameters on aver-
age, and in most studies, the values were imported directly from
previous studies or hand-tuned. In 2017, Kangasrääsiö et al. [34]
frst attempted inverse modeling of an RL-based user simulator [15]
through BOLFI. Kangasrääsiö et al. estimated the posterior distribu-
tion of the free parameters (e.g., users’ duration of fxations) given
the observation dataset of the users’ menu search behavior. Through
an iterative search in the parameter space, BOLFI discovered the
free parameters that exhibit the least discrepancy between the sim-
ulation and observation. Consequently, the estimated parameters
improved the model ft compared to using manually tuned parame-
ters in the original model [15]. The study deserves attention in that
it frst introduced a principled method to infer the parameters of
RL-based simulation models in HCI. However, the time inefciency
problem of the iterative search remained; a single inference process
took hundreds of hours (in CPU time) in [34], because it involved
the process of newly optimizing an action policy for each new free
parameter sample. The required computational time may increase
to thousands of hours for simulation models dealing with more
complex HCI tasks, thus making the inference impractical. With
our proposed method, an action policy can be adapted according to
any given free parameter without further optimization. Therefore,
our method can facilitate the inverse modeling of user simulators
by dramatically reducing the time required for the iterative search
of free parameters.

3 INFERENCE WITH A GENERALIZED USER
BEHAVIOR SIMULATOR

Given a reinforcement learning-based user behavior simulation
model, we propose a technique to optimally maintain the simulated
user behavior even if the free parameters of the simulated users
are changed (policy modulation). A more efcient inverse model-
ing process using such a generalized simulation model was also
demonstrated. In this section, we introduce a general formulation of
RL-based user simulators and the implementation of our proposed
technique is described in detail.

3.1 RL-based User Behavior Simulator
In general, an RL-based user simulator is implemented as follows:
First, the simulated user’s cognitive and behavioral processes re-
quired to complete the target task and the characteristics of the
given environment are mathematically modeled. This model usu-
ally includes free parameters representing the characteristics of
the simulated user and the environment (e.g., cognitive capabilities,
reward weights for diferent objectives, or setting of input devices).
Then, the intrinsic decision-making process of the simulated user,
which is involved in the cognitive and behavioral processes, can be
formulated as MDP. Under the MDP formulation, the action policy

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Task state

Targeted free

parameters

Estimated

Q-values

(Choosing the

largest Q-value)

Primary Q-network

Modulated Q-network

Neural layer

Latent parameters

Feature-level

modulation

(e.g., FiLM or

concatenation)

Action

Hidden states

Secondary

encoder

network

Figure 1: The structure of the modulated Q-network.

of the simulated user determines the proper next action according
to the current observation of the task environment (i.e., task state)
at every decision-making step.

In particular, in recent user simulation model studies [15, 19, 31,
33], the optimal action policy of the simulated user is achieved by
estimating the Q-values. The Q-value, an RL terminology, represents
the expected cumulative reward until the episode ends when a
corresponding action is taken at the current state. The action policy
can be implemented as a neural network model, the so-called Q-
network, which predicts the Q-values of all available actions from
the given task state. The Q-network can be optimized through deep
RL algorithms, such as deep Q-network (DQN) [45], and by relying
on the trained Q-network, a simulated user can retain the optimal
policy of selecting the action with the largest predicted Q-value.

Previous studies have obtained the optimal policy (i.e., trained
a Q-network) when the free parameters of a simulated user are
fxed to specifc values (i.e., values of an average person). There-
fore, whenever the characteristics of the simulated user or task
environment are changed, the policy must be newly optimized.

3.2 Policy Modulation
3.2.1 Modulated Q-network. We introduce a method to generalize
the optimal policy of the simulation model to the variations in
the free parameters, that is, enabling policy modulation. Among
the known modulation approaches (Section 2.2), we empirically
found in this study that the best modulation performance for the
latest point-and-click simulation model [19] is achieved when the
targeted free parameters are involved in the intermediate features
of the Q-network (i.e., feature-level modulation). The choice of the
modulation method is crucial to achieve optimal policy modulation
of simulation models, and our empirical fnding for the point-and-
click simulation model may not be directly applicable to other
simulation models. In this study, we present a modulated Q-network,
which is a network structure that enables feature-level modulation
by providing the targeted free parameters as auxiliary inputs.

The presented structure consists of two neural networks: a pri-
mary Q-network and a secondary encoder network (Figure 1). The
primary network predicts the Q-values of all available actions from
a given task state. The primary Q-network can change the map-
ping to Q-values through feature-level modulation according to the

latent parameters. The secondary network (i.e., encoder network)
generates the latent parameters; the secondary network receives
the targeted free parameters and outputs their latent representa-
tion. Through the training process (RL) along with the primary
Q-network, the secondary network learns to extract the informa-
tion from the free parameters required for the efective modulation
of the primary Q-network.

We consider two representative methods of feature-level mod-
ulation that have been proven suitable for modulation in recent
RL studies: feature-level concatenation [1, 87] and FiLM [6, 54, 76].
Concatenating the latent parameters into hidden states prevents
dilution of the information of latent parameters as it passes through
neural layers; therefore, the primary Q-network can efectively in-
corporate the conditioning information to predict the Q-values.
FiLM provides a more direct method to modulate hidden states
through linear transformation (scaling and shifting). In the case of
using FiLM, the latent parameters are employed as shifting and scal-
ing coefcients applied to each hidden state; that is, the secondary
network acts as the FiLM generator in [54]. The modulation method
(e.g., feature-level concatenation or FiLM) and the structure of the
networks (e.g., width and depth of hidden layers) can be changed
depending on the types of targeted free parameters because the
abstraction process required to achieve optimal modulation may
difer according to each type of free parameter.

3.2.2 Training method. To train the modulated Q-network, we ex-
tended the previous RL algorithms that train a Q-network (the DQN
family). In this section, we describe the training method with an
example of the original DQN [45]; however, this can be equally
applied to the DQN family. For example, in Sections 7.1.2 and 8.1.2,
we apply two diferent DQN-based algorithms, namely, the enve-
lope multi-objective Q-learning (MOQL) [80] and double DQN [74].
During the training phase of DQN, decision processes of the agent
at every timestep (a tuple of MDP transition, (st , at , rt , st +1), repre-
senting the state, action, reward at timestep t , and state at timestep
t+1, respectively) are stored in the replay memory. At every train-
ing step, the Q-network of the agent is updated by employing the
batch of the transitions sampled from the replay memory, in the
direction of minimizing the temporal diference (TD) error defned
as follows:

r + γ max Q(st +1, a ′) − Q(st , at),
a ′

where γ denotes the discount factor of the MDP, Q(s, a) denotes the
estimated Q-value by the Q-network. As training proceeds, the Q-
network accurately estimates the Q-values and the agent acquires
the optimal behavior.

For the generalization of the action policy, the targeted free
parameters (denoted as z) are newly sampled at the beginning
of each training episode. That is, in each episode, the simulated
user explores a task environment with diferent free parameters
(e.g., diferent cognitive characteristics or reward formulations).
The sampled free parameters are stored in the replay memory
along with each transition of the episode; that is, the experience
tuple is extended as (st , at , rt , st +1, z). A batch of the extended
experiences is used to calculate the TD error of the estimation from
the modulated Q-network as follows:

r + γ max Q(st +1, a ′|z) − Q(st , at |z),
a ′

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Simulated

behavior

()

Update

Real user
Discrepancy

regression model

Discrepancy

Observed

behavior

()

d
is

cr
e

p
an

cy

parameter ()

Propose next parameters to simulate ()

Generalized

simulation model

Posterior of

parameters

Moving
target

Cursor

Hand in neutral position

Figure 2: Overview of the BOLFI process to infer free param-
eters of the simulation model (z) corresponding to a real user.
BOLFI constructs a regression model that estimates the dis-
crepancy between the user’s observed behavior (yo) and the
simulated behavior of the model (yz) with a given z. BOLFI
proceeds with the following iterative process: (1) BOLFI pro-
poses the next parameter sample, znext , that is likely to lead
to low discrepancy, based on the regression model; (2) the
regression model is updated with the discrepancy value ob-
tained from the simulation based on znext . In this paper,
we implemented a generalized simulation model over varia-
tions in z. Therefore, there is no need to optimize the simula-
tion model for every proposed z. After sufcient iterations,
BOLFI estimates the posterior of z for the given observed be-
havior, p(z |yo).

where Q(s, a |z) denotes the estimated Q-value by the modulated
Q-network, which is conditioned on the sampled free parameters z.
Through backpropagation, the modulated Q-network (i.e., the pri-
mary Q-network and secondary encoder network) can be optimized.
A framework such as the prioritized experience replay (PER) [67],
which can increase the training efciency based on the TD error of
each experience tuple, can also be applied to the training with no
further modifcation.

3.3 Inferring Free Parameters with User
Simulator

The simulated behavior refecting any given free parameters now
can be obtained without the need to re-train the action policy; that
is, the simulation model is generalized over the free parameters.
Next, with the generalized simulation model, we are facing the
inverse modeling problem, that is, inferring the free parameters
from a real user’s observed behavior.

Simulation-based inference methods (e.g., ABC [35]) provide a
principled method to infer the free parameters by systematically
searching the parameters that best describe the observed behavior
of the simulation. In this study, we applied BOLFI [28],a recent
simulation-based inference method (also a variant of ABC), which
was frst introduced in HCI in [34]. In the latest attempt on inverse
modeling [34], hundreds of hours (in CPU time) were required
for a single inference because every single simulation for given
simulation parameters entails the process of newly training the
action policy. With no re-training process, our generalized simula-
tion model can signifcantly reduce the computational cost of the
inference process.

The BOLFI procedure is shown in Figure 2. BOLFI requires: a
simulation model M, which reproduces the behavioral data yz
given simulation parameters z; observed behavioral data yo ; and a

Figure 3: The point-and-click task environment covered in
this study. Center: A right-handed user performs a point-
and-click task on screen with a mouse device. Lef: The xy
coordinate of a target and a cursor on the screen. Right: The
xy coordinate of a user’s hand.

function to mesasure the discrepancy between yz and yo , denoted
as ∆(z). The inference goal is to determine z showing the least ∆(z).
The essence of BOLFI is to estimate the discrepancy (∆(z)) accord-
ing to the given simulation parameters by constructing a regression
model (via Gaussian process). Whenever yz is simulated using a
new z, BOLFI updates the regression model based on the evaluated
discrepancy. Our generalized simulation model can immediately ob-
tain yz for the new z with no further policy optimization; therefore,
we can signifcantly improve the time efciency compared to previ-
ous approaches. The learned regression model is used to propose
the next z to simulate (znext). At every iteration, BOLFI chooses the
znext following its acquisition rule—usually, z with the minimum
lower confdence bound value of the predicted discrepancy. This al-
lows the simulation to be conducted mainly in the low-discrepancy
region, therefore reducing the number of simulations required for
the inference. After running sufcient simulations, BOLFI estimates
a posterior of z that shows the least ∆(z) given yo , and we can use
maximum a posteriori (MAP) estimation to obtain the exact values
of the inferred free parameters. More details of BOLFI can be found
in the original paper [28].

4 POINT-AND-CLICK SIMULATION MODEL
We demonstrate the performance of the proposed technique us-
ing the latest user behavior simulator implemented based on deep
RL [19]. In particular, the simulation model realistically simulated
the point-and-click behavior of users. The model has 15 free pa-
rameters regarding the user’s physical characteristics, cognitive
characteristics, and intrinsic reward settings. In this section, the
model is briefy introduced.

4.1 Point-and-Click Scenario
The simulation model assumes a specifc point-and-click scenario.
The user uses a computer mouse to control the cursor on the screen.
A circular target is moving at a constant velocity on the screen;
when the target hits the edge of the screen, it changes the direction
of movement as if refected, and the speed is maintained (Figure 3).
The user is right-handed and the distance between the user’s head
and the display is 63 cm. The user is supposed to press the mouse
button when the cursor is within the target. When the user presses
the mouse button, the trial ends regardless of whether the target
is successfully acquired, and a new target appears with a random
velocity at a random location.

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Perceived
information

Cursor and
target

information

Cursor
movement

Motor plan
of hand

Motor Noise

Prediction horizon

Motor plan
of cursor

Target-tracking processAction variables

Click processSub-modules

Input and output of simulation model

Click timingClick decision

Figure 4: Overview of the point-and-click simulation model
in [19]. The simulated user’s point-and-click behavior
(target-tracking and clicking) is implemented through a
combination of fve sub-modules.

4.2 Point-and-Click Process
The model describes the user’s point-and-click process by intro-
ducing fve sub-modules (Figure 4). First, the motor control module
creates a motor plan that allows the cursor to reach the target’s
future location. At this point, a variable that determines how far
into the future the user will generate the motor plan is called the
prediction horizon Th . Second, the click action module plans a timing
to perform a click action to acquire the target while the cursor is
moving toward the target. At this point, the module also decides
whether to actually execute the planned click action, which is ex-
pressed as the value of the variable K (K=1 when decided to click,
K=0 when decided to not click). Third, the visual perception module
describes the process by which the user perceives the future po-
sition and velocity of the target and the cursor. The results of the
noisy perception are passed to the motor control module and used
to generate a motor plan. Fourth, the mouse module determines
the movement of the user’s hand to implement the cursor motor
plan generated from the motor control module. In this module,
the gain function of the mouse (implemented with Libpointing
library [13]) and the deviation of the cursor trajectory owing to the
rotation of the mouse are considered. Finally, the upper limb module
determines the degree of rotation of the mouse and incorporates
motor noise into the hand movement.

4.3 MDP Formulation
To train the simulation model through RL, the sequential decision
process of the simulated user in the point-and-click task environ-
ment should be formulated as MDP, that is, in the form of states,
actions, and rewards. The model defnes the state and action space
as follows:

• State: 11-dimensional vector with continuous values con-
sisting of perceived information of the target and cursor,
specifcally, (1) perceived cursor position (2D) and velocity

(2D); (2) perceived target position (2D) and velocity (2D); (3)
hand position (2D); and (4) target radius (1D).

• Action: Click decision K (a binary value) and prediction
horizon Th (a discrete value ranging from 0.1 to 2.5 s with a
0.1 s interval). Therefore, the number of available actions at
each state is 50 (2 K × 25 Th).

• Reward: Four objective terms describe an agent’s task perfor-
mance: (1) successful click, (2) failed click, (3) motor execu-
tion efort, and (4) elapsed time. At the agent’s j-th decision-
making (at timestep t=tj), numerical values corresponding
to each objective term are defned as follows:
– Successful click: 1 if clicked successfully, otherwise 0.
– Failed click: 1 if clicked unsuccessfully, otherwise 0.
– Motor execution efort: sum of the absolute accelerationÍtj +1of the simulated hand, that is, ∥ Ûvh ∥, where vÛh is the t =tj
acceleration of the simulated hand.

– Elapsed time: time interval between the decision-making,
that is, tj+1 − tj .

The aggregated reward r j can be expressed as wrew · rj ,
where rj is a vector in which each component represents
the numerical value for each objective, and wrew is a vec-
tor representing the reward weight of each objective (=
[wsuccess, wfail , wefort , wtime]

T). wsuccess is set to have a posi-
tive value (compensation), whereas the other three weights
have negative values (penalty). Compared to the original pa-
per [19], we added the last time term in this paper, because
we empirically found that adding the time term showed bet-
ter reproduction of users’ various point-and-click behaviors
under diferent speed–accuracy bias instructions (e.g., less
accurate but faster behavior). The model in [19] can be re-
garded as a specifc case in which wtime is set to zero.

4.4 Free Parameters
There are 12 free parameters in the model that determine the opera-
tional characteristics of each module. They represent the cognitive
and physical characteristics of a simulated user. Furthermore, if we
consider the weights that determine the reward setting in the MDP
formulation, the number of free parameters of the model increases
to 16. Table 1 lists the symbols and meanings of all parameters, and
the values they assumed in the original model [19].

Among the parameters, Tp is a constant time interval that hu-
mans spend for motor planning in the intermittent motor control
process, and is a value that can be regarded as having a slight dif-
ference between users [11]. Conversely, ten of the parameters (σv ,
nv , np , cσ , cµ , ν , δ , lse , lew , and lws) can show signifcant difer-
ences between users. Among them, lse , lew , and lws related to the
geometry of the user’s arm can be measured explicitly. However,
the remaining parameters (σv , nv , np , cσ , cµ , ν , and δ) can only
be implicitly estimated by analyzing user behavior in controlled
laboratory experiments. The remaining four parameters (wsuccess ,
wfail , wefort , and wtime) related to the user’s intrinsic reward set-
ting may also show diferences between users. Furthermore, these
parameters can change even for the same user if the context of
the interaction changes (e.g., diferent speed–accuracy instructions
given to the user) [83].

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Table 1: Free parameters of the point-and-click simulation model in [19]. Module: Sub-module of the point-and-click model
to which each parameter belongs. Inference: Targeted parameters to be inferred in this study.

Parameter Meaning Value in [19] Module Inference

Tp
σv

Unit time interval for motor planning
Visual perception noise

0.1 s
0.15

Motor control
Visual perception ✓

nv Motor noise constant (parallel) 0.2 Upper limb ✓
np
lse

Motor noise constant (perpendicular)
Shoulder-to-elbow length

0.02
25.7 cm

Upper limb
Upper limb

lew Elbow-to-wrist length 25.7 cm Upper limb
lws Wrist-to-hand length 6.43 cm Upper limb
cσ Precision of internal clock 0.09015 Click action ✓
cµ
ν

Implicit aim point
Drift rate

0.185
19.931

Click action
Click action

δ Visual encoding precision limit 0.399 Click action
fgain()
wsuccess

Mouse acceleration function
Reward weight of successful click

OS X 10.12
14

Mouse
– ✓

wfail Reward weight of failed click −1 – ✓
wefort Reward weight of motor efort −1 – ✓
wtime Reward weight of elapsed time 0 – ✓

Excluding explicitly measurable parameters and parameters that
do not difer between users, seven cognitive parameters (σv , nv , np ,
cσ , cµ , ν , and δ) and four reward parameters (wsuccess , wfail , wefort ,
and wtime) are worth inferring by analyzing the user’s point-and-
click behavior. Among the cognitive parameters, σv represents the
precision with which the user perceives the speed of the target, that
is, the user’s visual perception performance. nv and np are propor-
tional constants that determine the amount of signal-dependent
motor noise added to each of the parallel and perpendicular direc-
tions when the user wants to move the hand to the desired position.
In general, nv and np are expected to be highly correlated with
each other (actually verifed in Section 6.2.2). Finally, cσ , cµ , ν , and
δ are variables indicating the quality of the user’s click process
[39, 40], and it is known that cσ (precision of the user’s internal
clock) shows a signifcant diference between users [40, 51].

Consequently, we decided to infer the three cognitive parameters
(σv , nv , and cσ) and four reward parameters (wsuccess , wfail , wefort ,
and wtime) of the model by analyzing the user’s point-and-click be-
havior in this study, considering the importance of each parameter
and the correlation between the parameters.

5 STUDY OVERVIEW
We conducted three studies (Studies 1–3) to demonstrate and eval-
uate our inference technique using the latest point-and-click simu-
lation model introduced in Section 4. Specifcally, we present two
diferent generalized point-and-click simulation models based on
diferent structures of the modulated Q-network: Mr ew , a simula-
tion model generalized across the variations in reward weights of
the simulated user (Study 2), and Mcoд , a simulation model gener-
alized across the variations in cognitive parameters of the simulated
user (Study 3). Those studies are summarized as follows:

• Study 1: We built a dataset of point-and-click behavior with
20 participants. This dataset was used in Studies 2 and 3 to
evaluate the performance of our inference technique.

• Study 2: By analyzing the point-and-click behavioral data of
20 participants, we inferred the reward parameters (wsuccess ,
wfail , wefort , and wtime) of the participants, which varied
for diferent speed–accuracy bias instructions (emphasis on
speed, accuracy, or both).

• Study 3: By analyzing the point-and-click behavioral data
of 20 participants, we inferred the cognitive parameters (σv ,
nv , and cσ) of each participant.

In the following sections, we explain the implementation and
evaluation methods and discuss the results of each study.

6 STUDY 1: POINT-AND-CLICK INFERENCE
DATASET

In Study 1, we built a dataset of point-and-click behaviors. This
dataset is used in Studies 2 and 3 to evaluate the performance of our
inference technique. The participants performed four diferent tasks
in two days (Figure 5). Three of these tasks are to estimate baseline
values of participants’ cognitive parameters (σv , nv , and cσ). These
tasks have been sufciently verifed in previous studies [39, 43, 72]
for their signifcance in measuring each cognitive parameter. The
other one is to measure the point-and-click behavior of participants,
which will actually be used for inference in future studies.

6.1 Method
6.1.1 Participants. Twenty participants were recruited (13 women
and 7 men). Among the 20 participants, 11 were under the age of
30, 5 were in their 30s, and 4 were in their 40s. Their average age
was 30.4 (σ =8.65). We recruited participants from a wider age range
than in previous studies [7, 19, 34, 51]. This increases the external
validity of our inference study. All participants were right-handed
and reported themselves familiar with the desktop environment.

6.1.2 Tasks. Participants performed four tasks in two days. Each
task is described as follows.

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Point-and-click task
with a moving target

Three conditions of task instruction
(in a counter-balanced order)

emphasis emphasis emphasisPractice

: Collecting point-and-click behavioral data

Starting
point

Candidate
positions

Cursor

Target
point

Drifting
grating stimuli

Fixation
point

Acquisition
zone

Moving
target

Moving
target

Cursor

Speed discrimination () Ballistic aiming () Moving-target acquisition ()

: Measuring user cognitive parameters

Figure 5: Overview of the laboratory experiment in Study
1. Day 1: Participants performed the three diferent tasks.
Description of each experimental setup and the measured
cognitive parameter are presented at each stage. Day 2: Par-
ticipants performed a point-and-click task under three task
instruction conditions (Accuracy, Speed, or Equal).

• Speed discrimination task [72]: In each trial, a pair of drifting
grating stimuli were shown to the participant (Figure 5(a)).
The stimulus only existed for a certain duration and then dis-
appeared, and the participant must then answer which stim-
ulus drifts at a higher speed (two-alternative forced choice
(2AFC) paradigm). In this process, participants were asked
to focus on the fxation point at the center of the screen.
The speed of each stimulus can be varied from one trial to
another. One of each pair of stimuli was a reference grating,
and the other was a test grating, and the position of each
stimulus (left or right) was randomly assigned in each trial.
From this experiment, we expected to measure the baseline
of the participant’s visual perception noise parameter, σv .

• Moving-target acquisition task [39]: Participants were asked
to press a button when a moving target was positioned
within an acquisition zone (Figure 5(b)). The target appeared
repeatedly over a specifc period and was a line moving from
left to right at a constant speed. Participants could not skip
targets and press the button at least once in each trial. From
this experiment, we expected to measure the baseline of
participants’ internal clock precision, cσ .

• Ballistic aiming task [43]: Participants were asked to move a
cursor from a starting point to a target point (Figure 5(c)). The
trial started when the participant clicked the starting point.
Subsequently, when the cursor starts moving, the starting
point, target point, and cursor disappear. Consequently, the
user’s movement becomes ballistic. When the cursor stops
moving, the trial ends and a new starting and target point
are given. From this experiment, we expected to measure
the baseline of participants’ motor noise constant, nv .

• Point-and-click task: Participants performed the same task as
the point-and-click scenario assumed by the point-and-click
simulation model (described in Section 4.1, Figure 5(d)).

6.1.3 Design. All tasks followed a full factorial within-subject de-
sign. The independent and dependent variables for each task design
are described below.

• Speed discrimination task: The experiment had an indepen-
dent variable, the speed of the reference grating (1, 2, 4, and
8 deg/s in visual angle). The speed of the test grating was de-
termined by following the two interleaved adaptive staircase
procedures commonly used in 2AFC tasks. The speed of the
testing grating was between half and double the reference
speed of the corresponding trial. The dependent variable
was participant’s discrimination performance (success prob-
ability) at each reference grating speed. Fifty discrimination
trials were performed for each reference speed condition.
The reference speed was randomly selected for each trial
while controlling the total number of trials to 50.

• Moving-target acquisition task: The experiment had three
independent variables (P , tc , andWt). P represents the period
in which the target appears repeatedly and had two levels (1
or 2 s). And tc represents the duration in which participant
could observe the movement of the target that appeared in
each trial, and had three levels (0, 0.08, or 0.25 s). Wt is the
duration in which the target stays within the acquisition
zone and has two levels (0.08 or 0.13 s). The dependent vari-
able is the probability of participant’s acquisition failure for
each P-tc -Wt combination. For each combination, 50 target
acquisition trials were performed.

• Ballistic aiming task: The experiment had one independent
variable, the distance from the starting to the target point
(12, 32, 66, 113, 174, 248, 336, 437, or 552 pixels). To prevent
participant learning, the starting point was randomly deter-
mined for each trial as one of the four candidate positions
(see Figure 5(c)). For each distance condition, 40 cursor move-
ment trials were performed. The dependent variable is the x-
and y-direction standard deviation of the cursor end point
distribution.

• Point-and-click task: The experiment had one independent
variable, task instruction (Accuracy, Speed, or Equal). In the
Accuracy condition, participants were instructed to click as
accurately as possible. In the Speed condition, participants
were instructed to click as quickly as possible. In the Equal
condition, participants were asked to click as quickly and
accurately as possible. To observe sufciently diverse point-
and-click behaviors from participants, we randomized the
speed and radius of the target over a wide range (speed: 0–
510 mm/s, radius: 9–24 mm) from one trial to another. Each
participant performed four blocks of trials per task instruc-
tion condition, and each block consisted of 200 consecutive
trials. The cursor and target trajectories were both logged.

6.1.4 Material. The captured images of the task screen are shown
in Figure 6. The implementation of each task is described in more
detail below.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Figure 6: Captured screens of (a) speed discrimination, (b) moving-target acquisition, (c) ballistic aiming, and (d) point-and-
click tasks.

• Speed discrimination task: Drifting gratings were imple-
mented as circular patches with a diameter of 3 degrees (in
visual angle). The gratings were implemented as broadband
stimuli covering spatial frequencies from 1/3 cycles/deg to
2 cycles/deg (as in [72]). The phase of each frequency com-
ponent was randomized and the power spectrum fell as f −2.
Patches were centered at 6 degrees on either side of the fx-
ation point. The contrast2 of the grating was set to 0.5 for
both the reference and test.

• Moving-target acquisition: The speed of the target was au-
tomatically set for each condition such that it took P for
the target to pass through the given screen width. After the
target speed was determined, a black matte was overlaid to
satisfy the tc condition, and an acquisition zone that satisfes
the Wt condition was created.

• Ballistic aiming: The candidate locations of the starting point
were 100 or -100 pixels shifted along the x or y-axis from the
base point (i.e., 1/3 point from the left of the screen, vertically
centered). A standard cursor pointing to the upper-left side
was used.

• Point-and-click task: The color of the target was red and
the color of the background was white. A standard cursor
pointing to the upper-left side was used.

6.1.5 Procedure. The experiment was conducted in two days to
minimize the efects of fatigue on participants. On the frst day, all
participants were informed about the overall procedure and signed
a consent form before the experiment. Participants performed the
tasks in the order of speed discrimination, moving-target acquisi-
tion, and ballistic aiming. Each participant was given practice trials
for each task before the measurement. Participants were given a
5-minute break between tasks. The approximate time taken for each
task was as follows: speed discrimination (20 min), moving-target
acquisition (15 min), and ballistic aiming (30 min). The experiment
on the frst day took approximately 1.5 h for each participant.

On the second day, before collecting the point-and-click behav-
ioral data, the participants were provided a practice session of a
block of trials. Subsequently, participants sequentially performed
the three task instruction sets (4 blocks each) in a randomized and
counterbalanced order. The experimenter verbally provided the
task instructions (Accuracy, Speed, or Equal) to participants before
the start of each block. Participants were given a 1-minute break
between blocks and a 5-minute break between each task instruction
set. Each block was performed within approximately 5 min, and the

2A value obtained by dividing the maximum intensity amplitude of a grating by the
maximum value of the intensity diference the monitor can display.

entire data collection process per participant took approximately
1.5 h for the second day.

6.1.6 Apparatus. Participants performed the experiment in a desk-
top environment (Mac OS Catalina 10.15) consisting of a single
monitor display, keyboard, and mouse. A 24-inch (527.04 mm ×
296.46 mm) monitor (Lenovo ThinkVision T24i-10) was used. The
refresh rate of the display was set to 60 Hz. A wired optical mouse
(Logitech G102) was used with a resolution of 1,000 DPI, a polling
rate of 125 Hz, and a constant control-display gain of 10.4. The
moving-target acquisition task was implemented with a size of
900 × 400 pixels, and all other task applications were run on a
full-screen (1920 × 1080). All task applications were implemented
in Java language and run at a frame rate of 60 Hz or higher. A
TES-137 luminometer was used to measure the grating contrast in
the speed discrimination task.

6.2 Results
6.2.1 Analysis. The cursor and target trajectories obtained from
the point-and-click task will be used subsequently to evaluate the
inference performance of our technique in Studies 2 and 3. However,
before that, we performed a preliminary analysis of the participants’
point-and-click performance (success rate and trial completion time)
in this study. The success rate is the rate at which the participant
acquired the target. The trial completion time is the time interval
between the moments when the target is given and when the par-
ticipant clicks. Meanwhile, we found a signifcant diference in trial
completion time between the frst block and subsequent blocks
from Helmert contrast (p=0.008, Figure 7). This was considered
as an efect of the participants’ learning; thus, the frst block was
removed from all subsequent analysis and inference studies.

The goal of the remaining three tasks, except for the point-and-
click task, is to estimate the baseline values of the cognitive param-
eters of participants. The analysis process for each task is described
in detail below.

• Speed discrimination task: For each speed condition of the
reference grating, we obtained the corresponding psychome-
tric function for each participant. From this, we determined
the standard deviation of the participants’ speed perception
distribution in each condition. This process is performed
through MLE combined with the Monte Carlo method, as-
suming that the distribution of the participant’s speed per-
ception is Gaussian. For more details, refer to the original
paper [72]. Before conducting the experiment, we performed

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Accuracy condition Equal condition Speed condition

Figure 7: Mean trial completion time according to blocks
in each task instruction (lef: Accuracy, center: Equal, right:
Speed). The results of 12,000 trials per block (20 participants
× 3 task instructions × 200 trials) are averaged. The error bar
represents one standard error of the mean.

′log transformation of grating speed (s = ln(1 + s/0.3)) ac-
cording to the original study [72]. Through this transfor-
mation, it can be assumed that the standard deviation (σ)
of the participant’s perceptual distribution is relatively con-
stant even when the reference speed is changed. According
to the original study, σ can be expressed as the product of
the grating speed (s ′) function and the contrast (c) function:
σ = д(s ′)h(c). The cognitive parameter σv to be obtained is
the average of д(s ′) for each participant. We approximated
h(c) to be 2.0, the average value observed in the original
study, and estimated д(s ′) values from σ .

• Moving-target acquisition task: According to the model pro-
posed by the previous study [39], for each P-tc -Wt condition,
we can express the participant’s error rate E as follows: � �

1 Wt − µ µ
E = 1 − er f (√) + er f (√) ,

2 σ 2 σ 2

where µ = cµ · Wt

cσ · Pand σ = q .
1 + (P/(1/(eνtc − 1) + δ))2

By ftting the empirically observed error rate to the above
equation, we can estimate the cognitive parameters (cσ , cµ ,
ν , and δ) for each participant.

• Ballistic aiming task: We frst simulate the users’ ballistic
aiming movement with various nv -np sets, using the point-
and-click simulation model (Section 4). Through this, we can
simulate the end point distributions of the ballistic movement
for each nv -np set, and quantitatively obtain the slope of
standard deviations of the distributions according to target
distances. We determine the nv and np , which minimize
the discrepancy between the slope of the participant and
that of simulation, and set them as the measured values
for each participant. The simulation was set up under the
same conditions as the task performed by the participants
(for more details of the simulation, refer to the previous
study [19]).

6.2.2 Cognitive parameters. We obtained the participants’ base-
line cognitive parameters as follows: σv (µ=0.169, σ =0.082), cσ
(µ=0.149, σ=0.084), cµ (µ=0.385, σ =0.142), ν (µ=15.766, σ=5.376), δ
(µ=7.81e−3, σ =1.43e−2), nv (µ=0.245, σ =0.056), and np (µ=0.047,

Figure 8: Point-and-click performance (success rate in blue
and completion time in orange) of participants according to
three cognitive parameters (lef: σv , center: nv , right: cσ). Lin-
ear regression results are presented as solid lines along with
the bands of 95% confdence interval.

** *** ***

Figure 9: Box plots of the point-and-click performance (lef:
success rate, right: completion time) according to the task in-
structions. Statistically signifcant diferences are indicated
(**: p < 0.01, ***: p < 0.001).

σ=0.033). Among the measured σv values, we observed that the
two extremely high values (0.730 and 1.191) induced the instability
of optimization of the point-and-click simulation model in Section 4.
Specifcally, owing to the extremely high visual perception noise,
the simulated user’s perceived information of the target and cursor
varied signifcantly, which prevented convergence of the simulated
user’s policy. This problem of needing an appropriate upper bound
for σv is our new fnding that has not been reported in the original
paper [19]. To enable stable optimization of the simulation model,
we adjusted the σv values of two outliers to the upper three-sigma
value (=0.415). As mentioned in Section 4.4, a signifcant correlation
existed between nv and np (Pearson’s r=0.460, p=0.041). Therefore,
in subsequent studies, we assumed a linear relationship between
the nv and np values, according to their measured mean values
(np = 0.192 × nv). We also examined the correlation between the
three targeted cognitive parameters (σv , cσ , and nv). There was
a signifcant correlation between σv and cσ (Pearson’s r =0.643,
p=0.002); however, no other signifcant correlations were found
(p>0.05).

6.2.3 Point-and-click performance. The average success rate of all
participants was 45.4%, and the trial completion time was 0.89 s

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

(σ =0.20 s). Figure 8 shows the point-and-click performance of indi-
vidual participants according to their measured cognitive parame-
ters. We examined the correlation between participants’ cognitive
parameters and their performance. Both σv and cσ exhibited a
high correlation with the success rate (for σv , Pearson’s r=−0.603,
p=0.005; for cσ , Pearson’s r=−0.721, p<0.001). No other signifcant
correlations were found.

Figure 9 shows how the task instruction changed the partici-
pants’ behavioral strategies (levels of speed–accuracy trade-of).
The average performance of the participants according to each
task instruction was as follows: for Accuracy, success rate=52.1%,
completion time=1.295 s (σ=0.383 s); for Equal, success rate=44.4%,
completion time=0.768 s (σ =0.173 s); for Speed, success rate=39.2%,
completion time=0.635 s (σ=0.112 s). A repeated measure ANOVA
revealed that there were signifcant efects of the task instruction
on both performance metrics (for success rate, F2,38=76.56, p<0.001;
for completion time, F2,38=24.62, p<0.001). We indicated all the post
hoc test (pairwise t-test) results between the conditions in Figure 9.

6.3 Discussion
In Study 1, we built a dataset of point-and-click behaviors from
20 participants through a controlled laboratory experiment. Com-
pared to the latest point-and-click dataset (mean success rate=62.3%,
mean completion time=0.89 s) [51], the participants in our dataset
exhibited a lower mean success rate (45.4%) and the same mean
completion time (0.89 s). This was expected because the demo-
graphic composition of participants changed and, in particular, the
participants’ average age increased (25.02 to 30.40). In addition,
the change in the mouse setting (e.g., control-display gain) could
contribute to the lower mean success rate.

6.3.1 Baseline values of cognitive parameters. We obtained base-
line values of the cognitive parameters from each of the 20 partici-
pants. This allows us to reliably determine the free parameters of
the simulation model than simply applying typical mean values
reported in previous studies. Compared to the previous point-and-
click study [19], which employed the literature value (see Table 1),
the mean baseline values of the three target cognitive parameters
were diferent as follows: σv (increased from 0.15 to 0.169), nv (in-
creased from 0.2 to 0.245), and cσ (increased from 0.090 to 0.169).
The distributions of measured values include the literature values
within the one-sigma range (i.e., µ ± σ).

6.3.2 Correlations between cognitive parameters. The correlation
between nv and np was expected as it is a general observation. In
addition, we found an unexpected correlation between σv and cσ ,
two of the three target cognitive parameters for inference. Both σv
and cσ represent participant’s ability to perceive a specifc visual
stimulus given for a short period. In this perception process, partic-
ipants have to encode visual stimuli in their working memory (or
visual image store) within a short time [12]; thus, the performance
of both speed perception [22], which is related to σv , and timing
perception [16], which is related to cσ , can be commonly infuenced
by the capacity of participant’s working memory. If the correlation
between those target parameters was not discovered, the inference
(BOLFI) would be performed using an incorrect prior distribution of

the target parameters, thereby leading to an incorrect posterior es-
timation (i.e., degrading the inference performance). Therefore, the
correlation between σv and cσ was an important observation and
it was considered in the inference process in Study 3 (Section 8.2).

6.3.3 Efects of cognitive parameters. The participants’ success ra-
tios on the point-and-click trials were infuenced by two of the
three measured cognitive parameters (σv and cσ). We found that
a participant with a lower visual perception noise (lower σv) or a
more precise internal clock (lower cσ) performed the point-and-
click task more accurately. To successfully click on the target, it is
necessary to accurately estimate both the relative speed between
the target and the cursor and the timing at which the cursor is po-
sitioned within the target; thus, this is an expected result. However,
nv did not demonstrate a correlation with any task performance in
our experiments. The nv variations between the participants may
not be sufciently diverse to cause a signifcant diference in the
point-and-click behaviors. In the future, a group of users with more
special motor characteristics may be included (e.g., seniors or kids).

6.3.4 Efect of task instruction. When given diferent task instruc-
tions, the participants clearly exhibited diferent task performances;
a signifcant diference was observed in every combination of the
pairwise t-test (Figure 9). A clear and well-known trade-of relation-
ship was observed; the participants could perform the tasks more
precisely as needed by spending more time. Our results accurately
replicated the results of previous studies [44, 83], reporting that a
user can fexibly change their point-and-click strategy according to
a given task instruction.

7 STUDY 2: INFERRING REWARD WEIGHTS
In Study 2, we infer the reward weights (wsuccess , wfail , wefort , and
wtime) of participants. This is equivalent to identifying the intrin-
sic reward settings of users to perform a point-and-click task. To
achieve this, we frst train Mrew , a generalized simulation model
over variations in reward weights. The model is implemented with
an action policy based on our modulated Q-network that uses the
reward weights as targeted free parameters to generalize. Conse-
quently, the optimized simulation model (Mrew) can immediately
adapt its behavior according to given reward weights. We demon-
strate that, using Mrew , the intrinsic reward settings of users can
be inferred with improved efciency.

7.1 Model Training
In order to train Mrew , we applied the envelope MOQL [80], which
is one of the most recent multi-objective RL algorithms. For an
agent behaving in a task environment with several objective terms,
the algorithm provides a specialized method of training the action
policy that can respond according to the given reward weights
(wrew) using a form of multi-objective Q-network. We describe the
details of the method of incorporating the modulated Q-network
into the algorithm.

7.1.1 Policy model architecture. We implemented the policy model
of Mrew based on our modulated Q-network, and modifed the
output part to have the form of a multi-objective Q-network [80]
(Figure 10). The core diference between the multi-objective and
general (single-objective) Q-networks is the use of a vectorized form

https://time=0.89
https://F2,38=24.62
https://F2,38=76.56

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Reward

weights

()

Action

Modulated

Q-network

Vectorized

Q-values

Aggregated

Q-values

Dot

product

Task state

Figure 10: The structure of the policy model of the general-
ized simulation model over reward weights (Mrew).

of Q-values. While single-objective Q-networks predict a scalarized
Q-value for each state-action pair, a multi-objective Q-network
predicts a vectorized Q-value for each state-action pair, consisting
of a Q-value corresponding to each objective term. In the multi-
objective case, the vectorized Q-values are dot-produced by the
reward weight vector (wrew) to form an aggregated Q-value. Thus,
the optimal behavior of a trained agent can be achieved by selecting
the action with the highest aggregated Q-value.

We set the modulated Q-network to receive the target reward
weight vector (wrew) as an auxiliary input along with the task state,
and to output the vectorized Q-values. The primary Q-network
(within the modulated Q-network) consisted of three fully con-
nected (FC) neural layers. The frst two layers consisted of 64 hid-
den units with ReLU activation. The output layer had a size of 200,
determined by the product of the action dimension (=50) and the
number of objective terms (=4). We used feature-level concatena-
tion, which empirically exhibited better modulation performance
than the FiLM method in this setting; however, FiLM can be a better
modulation method for simulation models in other task environ-
ments. The secondary encoder network consisted of three FC layers.
The frst two layers consisted of 16 hidden units with ReLU acti-
vation. The feature size of the last layer (i.e., the size of the latent
parameters) was 16. We allowed the concatenation of the latent
parameters only in the frst hidden states (i.e., outputs of the frst
layer). We used normalized values of the reward weights (values
mapped between −1 and 1) when they were fed as inputs of the
modulated Q-network.

7.1.2 Training details. We followed the envelope MOQL algorithm
to train the policy model (pseudo-code in [80]). The key diferences
between the envelope MOQL algorithm and the original DQN are
as follows: (1) the vectorized rewards and Q-values are used; (2)
the target reward weights are randomly sampled for every episode;
therefore, the agent explores over various reward settings; (3) a
specialized loss function (enabling homotopy optimization) is used
for model updating; (4) the training data (i.e., experiences) for the
model update are augmented by applying multiple diferent reward
weights to a single MDP transition.

During the training phase, we fxed wfail to −1 and sampled
the remaining three reward weights within the following ranges:
[2.5, 40] for wsuccess ; [−8, −0.5] for wefort ; and [−12, −0.75] for wtime .
Because the optimal action (with the highest aggregated Q-value) is
determined by the ratio of the reward weights, we could indirectly

investigate the efect of wfail by adjusting the remaining three
reward weights. The cognitive parameters of the simulated user
were set to the average values of the 20 participants measured in
Study 1. The mouse acceleration function (fgain) was set to the same
as used in the experiment in Study 1 (with fxed control-display
gain), and other remaining free parameters (Tp , lse , lew , and lws)
were set to the values of the previous study [19]. We trained the
model for total 1M training steps and the entire training process
took 4–5 days (using Intel Xeon E5-2630v4 CPU, 2.2 GHz). An
Adam optimizer with the inverse-square-root learning rate schedule
[75] (learning rate=0.001, warm-up step=5K) was used. The replay
memory size was 100K, the batch size was 1024, and the discount
factor (γ) was 0.95.

7.2 Inference
With the trained Mrew , we applied BOLFI to ft (i.e., infer) the re-
ward weights (wsuccess , wefort , and wtime), for each of the three task
instructions, that best describe the participants’ behavioral data col-
lected in Study 1. For each task instruction, there were 12,000 trials
of behavioral data from the 20 participants, and we used 2,400 trials
for the inference. Accordingly, during BOLFI, simulation of 2,400
trials, under the same conditions as performed by participants (the
same initial cursor position, target position, velocity, and radius),
was conducted per sample acquisition process. We binned the 2,400
trials using the target speed and radius (four equal-frequency bins
for each). Using eight bins, the discrepancy function was defned asÍ
bins((SRobs − SRsim)2 + a × (CTobs − CTsim)2), where SR and CT

denote the average success rate and completion time in each bin
(the subscripts obs and sim represent observed and simulated data),
respectively, and a is the coefcient that balances the two metrics.
BOLFI was performed with 100 sample acquisition processes for
each task instruction. Each inference process (i.e., simulation of
2,400 trials × 100 samples) took approximately four hours.

7.3 Evaluation and Results
7.3.1 Generalization performance. To evaluate the generalization
performance of our trained Mrew , we investigated the simulated
behaviors of Mrew adapted to diferent sets of reward weights.
We individually trained simulation models with the same sets of
fxed reward weights (one individually trained model per fxed
reward weight set), and compared the simulated behaviors of the
individually trained models and our Mrew that was modulated with
the corresponding reward weight set. If Mrew exhibits simulated
behavior similar to that of each individually trained model for each
reward weight set, the generalization performance of Mrew can be
judged as satisfactory.

For this evaluation, we prepared seven sets of reward weights (i.e.,
corresponding to seven hypothetical users with diferent intrinsic
reward settings); one set had the intermediate (mid) values for the
three reward weights (wsuccess , wefort , and wtime); the other six sets
had one of the three reward weights high or low (2×3 combinations).
We set the (high, mid, and low) values of each reward weight to have
the same distance from the logarithmic scale as follows: wsuccess
(25.0, 10.0, 4.0), wefort (−5.0, −2.0, −0.8), and wtime (−7.5, −3.0, −1.2).
For each of the seven sets, one individually trained model was
trained based on the same setting with Mrew (each model took

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Figure 11: Simulated point-and-click performance (lef: suc-
cess rate, right: completion time) of the individually trained
models (x-axis) and our Mrew (y-axis). The simulated results
of the two models are compared under 7 diferent reward
weight sets. Linear regression results are presented as solid
lines along with the bands of 95% confdence interval.

approximately 1.5–2.5 days for training). The key diferences in
the individually trained model compared with Mrew were (1) the
absence of policy modulation and (2) fxed reward weights during
the training phase.

We compared the simulated behavior of the models in two as-
pects: (1) the simulated task performance and (2) the simulated
user’s prediction horizon (Th) trend within a trial. For the compari-
son, we simulated 9,000 trials for the individually trained models
and Mrew , under the same initial conditions. Figure 11 shows the
comparison of the simulated performance of both models. Our
model (Mrew) reasonably reproduced the task performance of the
individually trained models with high coefcients of determination
(success rate: R2=0.91, completion time: R2=0.93). We also compared
the simulated user’s Th , which is determined solely by the action
policy, and thus confrmed whether the action policy of Mrew has
actually adapted. Figure 12 visualizes the change of Th in a trial
according to the variations in the values of each reward weight,
for the individually trained cases and Mrew , respectively. Mrew
clearly reproduced the variation in Th shown in the individually
trained models, especially, in terms of the increase or decrease in
Th according to the variations in each value of the reward weight.

7.3.2 Inference performance. Figure 13 shows the inferred re-
ward weights for each task instruction. For inference, we used
the MAP values of the posterior distribution obtained through
BOLFI. The exact values of inferred reward weights were as
follows: wsuccess=6.08, wefort =−4.46, wtime=−3.19, for Accuracy;
wsuccess=3.10, wefort =−4.19, wtime=−11.82, for Equal; wsuccess=2.50,
wefort =−2.64, wtime=−12.00, for Speed. These values represent the
reward formulations for each task instruction in which average
participants are expected to have; that is, the reward settings are
inferred at the population level.

7.4 Discussion
In Study 2, we validated our method to implement the generalized
model Mrew . The trained Mrew exhibited satisfactory generaliza-
tion performance in that the model successfully reproduced the

simulated behaviors of all individually trained models with dif-
ferent sets of reward weights. While the previous point-and-click
model [19] employed a hand-tuned reward formulation, we demon-
strated that our Mrew can provide an automated method to infer the
reward formulation from the observed behaviors of participants.

7.4.1 Efects of reward weight variation. An advantage of the gener-
alized model is that, as shown in Figure 12, we can easily investigate
the change in the simulated behavior according to the variations
in each reward weight, without the need to train a separate model
with the changed reward formulation. We confrmed that each of
the three reward weights (wsuccess , wefort , and wtime) infuenced the
simulated behavioral strategy (i.e., the prediction horizon during a
trial) as follows: the increase in wsuccess and wtime , and the decrease
in wefort led to the decrease in Th on average. The shorter Th indi-
cates that the simulated user assumes the strategy of tracking the
moving target by spending motor efort, rather than waiting for
the target to approach them. From this viewpoint, the change in
Th in Figure 12 can be interpreted as follows. The users increase
their Th when they intend to lower their efort (under high |wefort |).
Conversely, the users spend more efort by decreasing Th when
they need to perform the task more accurately (i.e., high |wsuccess |)
or faster (i.e., high |wtime |).

7.4.2 Computational eficiency. A noteworthy contribution of our
inference method is its enhanced computational efciency. Our
method exhibited a signifcant reduction in the computational cost
for the inverse modeling of HCI models. For example, the inverse
modeling of the menu-search model [34] reported that one parame-
ter acquisition took six hours, mainly because of the model training
period. The model training period of the point-and-click model was
even longer than that of this previous study. For example, the train-
ing process of each individually trained model took approximately
two days. However, our inference method took a few minutes for
one parameter acquisition, because no training period was required
as the model could be adapted to the cognitive parameters immedi-
ately. With our method, the reward weight inference process took
only four hours per task instruction.

7.4.3 Fited reward weights. Our estimated reward weights can
provide a plausible explanation for the change in the participants’
behavioral strategy according to the given task instructions. Follow-
ing the results in Figure 13, we can interpret that the participants
decreased their intrinsic compensation for a successful click (i.e.,
lower |wsuccess |) and increased their intrinsic penalty according to
the time spent (i.e., higher |wtime |), when receiving the Speed task
instruction compared to the Accuracy task instruction. In addition,
the magnitude of wefort was decreased, which indicates that partic-
ipants were willing to execute more motor efort to increase their
speed. These changes in reward weights matched with the partici-
pants’ less accurate but faster task performance in the Speed task
instruction (Figure 9). In the Equal task instruction, all three reward
weights were ftted in the middle between the Accuracy and Speed
task instructions. We conclude that our method can reasonably
estimate the participants’ intrinsic reward formulation, in that it
provides a plausible explanation for participants’ behaviors at the
diferent levels of speed–accuracy trade-of. In Study 3, the ftted

https://wtime=�12.00
https://wsuccess=2.50
https://wtime=�11.82
https://wsuccess=3.10
https://wtime=�3.19
https://wsuccess=6.08

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 12: Mean prediction horizon over normalized time of Mrew (top) and individually trained models (botom). We investi-
gated the changes in prediction horizon with variations in the absolute value of each reward weight (orange: low, blue: middle,
green: high). Each column represents the varying reward weight (lef: wsuccess , center: wefort , right: wtime). Each line (mean pre-
diction horizon over time) was obtained by averaging the results from simulations of 9,000 trials.

Figure 13: Results of the reward weights ftted for each task
instruction in Study 2. The absolute value of each weight
is shown; wsuccess is positive (compensation); wefort and wtime
are negative (penalty). wfail was set to −1.

reward formulations are used to train a simulation model that gen-
eralizes to diferent cognitive parameters of individual participants.

7.4.4 Inverse reinforcement learning. Inverse RL algorithms (e.g.,
[48, 86]) may be considered another possible approach to infer users’

reward formulation. Inverse RL infers the reward formulation of
expert agents based on their demonstrations. However, as argued by
Kangasrääsiö et al. [34], the previous inverse RL algorithms cannot
be readily used in user simulators in the feld of HCI. This is because
the methods are usually required to observe the environmental
states and actions of the expert agents. In user simulator cases, the
states and actions often refer to the inherent decision processes
of humans, which are not observable. For example, in our point-
and-click case, we can access the cursor trajectories performed
by participants; however, we cannot identify the actual velocity
and position of the target perceived (task state) or the prediction
horizon of the motor plan set by the participants (action). Instead,
we demonstrated that simulation-based inference methods (e.g.,
BOLFI) can be a suitable solution. Because the methods operate
based on the evaluation of the discrepancy between the observable
behaviors (e.g., cursor trajectory or task performance) of real and
simulated users, the inference is available without requiring access
to a user’s inherent decision process.

8 STUDY 3: INFERRING COGNITIVE
PARAMETERS

In Study 3, we infer the cognitive parameters (σv , nv , and cσ) of
each of the 20 participants using the proposed framework in Sec-
tion 3. Accordingly, we implement Mcog , a generalized simulation
model over cognitive parameters, equipped with an action policy
based on our modulated Q-network. Mcog uses the cognitive pa-
rameters as the targeted free parameters to generalize, whereas

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Cognitive

parameters

()

Q-values

()

Action

Task state

Modulated

Q-network

Figure 14: The structure of the policy model of the general-
ized simulation model over cognitive parameters (Mcog).

Mrew in Study 2 sets the reward weights as the targeted free pa-
rameters. We verify the generalization performance of the trained
Mcog , along with the individual-level inference performance.

8.1 Model Training
8.1.1 Policy model architecture. We implemented the policy model
of Mcog based on our modulated Q-network (Figure 14). The mod-
ulated Q-network receives the target cognitive parameters (σv , nv ,
and cσ) as auxiliary inputs along with the task state, and predicts
Q-values. The primary Q-network consisted of three FC layers. The
frst two layers consisted of 64 hidden units with ReLU activation.
The feature size of the last layer was set as our action dimension
(=50). For the modulation method, we used feature-level concatena-
tion, which empirically exhibited better modulation performance
than the FiLM method in our setting. In addition, better learning
performance was exhibited by skipping a secondary encoder net-
work and directly concatenating the cognitive parameter vector to
the hidden states of the primary Q-network. We used normalized
values (between −1 and 1) of each cognitive parameter as inputs to
the secondary encoder network.

8.1.2 Training details. We frst defned an appropriate range of
each cognitive parameter for generalization (the upper and lower
bounds of each parameter that Mcog can simulate). The range was
set according to the mean and standard deviation of the participants’
baseline value distribution measured in Study 1. The cognitive pa-
rameters have positive values, and they commonly show a skewed
distribution towards zero. Here, if we set the range according to the
common three-sigma bounds in the linear scale, the lower bound is
likely to be below zero, which is not realistic and makes the training
difcult. Therefore, we set the upper and lower bounds at the same
distance on a logarithmic scale from participants’ average values.
The skewness of the distribution was not evident on a logarithmic
scale. The distance to each bound from the average value was deter-
mined as the upper three-sigma value on a linear scale. Accordingly,
the defned ranges of the three targeted cognitive parameters were
as follows: [0.069, 0.415] for σv , [0.145, 0.413] for nv , and [0.055,
0.400] for cσ .

Based on the three ftted reward formulations (in Study 2) for
the three task instructions, we trained three separate Mcog corre-
sponding to each task instruction. We applied double DQN [74], a
DQN family known to exhibit more stable learning than DQN by
preventing a Q-network from overestimating Q-values. The major

diference between the two algorithms is the method of calculating
the TD error; therefore, we could apply the training method in
Section 3.2.2, without further modifcation. Other than the three
target cognitive parameters (σv , nv , and cσ), the remaining cogni-
tive parameters (cµ , ν , and δ) of the simulated user were set to the
average values measured in Study 1 (except for np , which maintains
a linear relationship with nv). We trained the model using 1.5M
training steps (approximately 2–3 days). For the remainder, the
same hyperparameters were used as in Section 7.1.2.

8.2 Inference
The BOLFI was conducted individually for each observed behavioral
data of the 20 participants. For the inference, we employed 900 trials
of behavioral data from each participant, consisting of 300 trials
for each task instruction. Accordingly, 900 trials under the same
task conditions were simulated for each sample acquisition process.
Three separate Mcog learned for each task instruction were used
to simulate the corresponding 300 trials each.

The targeted cognitive parameters infuence diferent stages of a
user’s point-and-behavior: σv (visual perception), nv (cursor move-
ment), and cσ (estimation of click timing). Therefore, to properly
infer all the cognitive parameters, it is reasonable to devise a dis-
crepancy function that considers the full cursor trajectory that the
participant exhibits until a click. We defned the discrepancy func-
tion of observed and simulated data as

Í
trials(dsuccess + b × dtraj)

where dsuccess represents the discrepancy for click results, that is, 1
if the click results (success or failure) of the observed and simulated
trials do not match, otherwise 0; dtraj represents the discrepancy
for trajectory, that is, MSE of the cursor positions on the observed
and simulated trajectories at 0.05 s intervals; and b is the coefcient
that balances the two discrepancy terms.

Because we observed a high correlation between σv and cσ in
Study 1, we refected this relationship in the inference process.
Accordingly, we obtained a linear function ftted by the baseline
values of σv and cσ (cσ = 0.497 × σv + 0.053). During the inference
process, we assumed that cσ is in the range of ± 1 standard deviation
(=0.084) from the predicted cσ value by the linear function for a
given σv . Accordingly, BOLFI determined the following three values
within the corresponding ranges: (1) σv (ranging from 0.069 to 0.415,
as defned in Section 8.1.2), (2) nv (ranging from 0.145 to 0.413), and
(3) the diference between cσ and the predicted cσ using the linear
function and the inferred σv (ranging from −0.084 to 0.084).

The inference of each participant’s cognitive parameters was
performed using the 100 sample acquisition processes of BOLFI.
Approximately 1.5 h were spent to infer the cognitive parameters
of each individual user; 30 h of CPU time was spent to infer the
cognitive parameters of all 20 participants.

8.3 Evaluation and Results
8.3.1 Generalization performance. Similarly, we evaluated the gen-
eralization performance of the trained Mcog as in Study 2. We
compared Mcog and individually trained models with given fxed
sets of cognitive parameters in two aspects: (1) the simulated task
performance and (2) the prediction horizon (Th) within a trial. Seven
fxed sets of cognitive parameters were used; one set had the aver-
age values for all three target parameters (σv , nv , and cσ); the other

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 15: Simulated point-and-click performance (lef: suc-
cess rate, right: completion time) of the individually trained
models (x-axis) and our Mcog (y-axis). The simulated results
of the two are compared under 21 diferent settings (3 task
instructions × 7 cognitive parameter sets). Linear regression
results are presented as solid lines along with the bands of
95% confdence interval.

six sets had one of the three parameters high (the two-third point
from the mean to the upper bound) or low (the two-third point to
the lower bound). Because we implemented Mcog for each of the
three task instructions, 21 models (3 task instructions × 7 cognitive
parameter sets) were individually trained. For the comparison, we
simulated 12,000 trials for both the individually trained models and
Mcog , under the same initial conditions.

As shown in Figure 15, our model (Mcog) successfully repro-
duced the task performance of the individually trained models with
high coefcients of determination (success rate: R2=0.98, comple-
tion time: R2=0.98). Figure 16 exhibits the change of Th in a trial
according to the variations in each cognitive parameter value, for
the individually trained cases and Mcog , respectively. It is observed
that Mcog exhibits very similar results to the Th change of the indi-
vidually trained models. For example, the individually trained cases
confrmed that the simulated user’s Th showed large variations
according to the change in σv compared to the other two cognitive
parameters, and it was reproduced by Mcog .

8.3.2 Inference performance. Our inference performance was eval-
uated based on the baseline cognitive parameters of each individual
user measured in Study 1. Figure 17 shows the correlation between
the inferred cognitive parameters of each individual user and the
baseline value of that user. The results show that our method pre-
dicts σv and cσ of individual users with a moderate level of coef-
fcient of determination (R2=0.50 for σv , R2=0.62 for cσ). For the
motor noise nv , a sufcient correlation between the predicted and
baseline values was not obtained (R2=0.01).

8.4 Discussion
In Study 3, we validated our proposed method of implementing a
generalized model Mcog over variations in cognitive parameters.
With the trained Mcog , we reasonably inferred two cognitive pa-
rameters (σv and cσ) from an individual participant’s observed
behavior. Such inference performance was achieved based on the
simulation model (Mcog), which was trained only in the virtual RL
environment (i.e., in silico). Mcog was not provided any information

on the relationships between the baseline cognitive parameters and
behavioral data of the participants during the training period.

8.4.1 Generalization performance. The trained Mcog exhibited ex-
cellent generalization performance, successfully approximating
individually trained models with diferent sets of cognitive parame-
ters. In particular, Mcog achieved even better similarity to the sim-
ulated performance of the individually trained models (Figure 15),
than Mrew in Study 2 (Figure 11). The variations in cognitive pa-
rameters (in Study 3) infuence the operation of each sub-module
within Mcog ; for example, σv is involved in the visual perception
module (Table 1). Conversely, the variations in reward weights
(in Study 2) do not infuence the sub-modules within Mrew . Ac-
cordingly, the simulated performances of Mcog in Figure 15 were
actually infuenced by not only the adapted action policy but also
the changed operation of the sub-modules. That is, the efect of
the action policy on the simulated task performance in the case of
Mcog was less than that of Mrew ; therefore, the better similarity
could be observed in Figure 15.

Meanwhile, the simulated user’s Th is determined solely by the
action policy; therefore, the comparison of Th can demonstrate
whether the action policy was successfully adapted. We confrmed
that both Mrew and Mcog faithfully reproduced the trend of Th of
the individually trained models (Figure 12 and Figure 16).

8.4.2 Efect of cognitive parameter variation. As shown in Figure 16,
we can investigate the efect of the cognitive parameter variations
on the simulated behavior using our generalized simulation model.
Mcog confrmed a clear change in the trend of simulated user’s Th
according to the variations in σv . Higher σv led to a longer Th over
the entire trial. Do et al. [19] explained that the simulated user takes
a strategy to increase Th to wait for the target bouncing of and
reduce their movement efort when the given trial is perceived to be
difcult (target is small or moves fast). Similarly, we can interpret
that the simulated user with a higher σv takes the strategy of
waiting more frequently and keeping a longer Th .

The other two cognitive parameters (cσ and nv) were found by
the generalized model Mcog to have less efect on the overall trend
of Th , compared to σv . It is expected that cσ infuences the behavior
of the simulated user only at the end of each trial because cσ is
involved only in a user’s click timing estimation, which is the fnal
step of a trial. In Figure 16, the simulated user with a lower cσ in
both Mcog and individually trained cases rapidly decreased Th at
the end of the trial. In the case of nv , nv may not be a factor that
infuences the simulated user’s prediction horizon; or the range of
nv measured from the participants may not be sufciently large to
lead to a diference in the action policy.

8.4.3 Computational eficiency. Simulation-based inference at the
individual level was almost infeasible in previous studies, owing
to the prohibitively high computational cost. However, with the
enhanced time efciency of our proposed inference method, the
individual-level inference for many users becomes practical for the
frst time in user simulator studies. In Study 3, it took less than one
minute for one sample acquisition (900 trials of simulation) during
BOLFI, and the entire inference process per individual user took
only 1.5 h. This is a tremendous reduction in the computational

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

Figure 16: Mean prediction horizon over normalized time of Mcog (top) and individually trained models (botom). We investi-
gated the changes in prediction horizon with variations in the value of each cognitive parameter (orange: low, blue: middle,
green: high). Each column represents the varying cognitive parameter (lef: σv , center: nv , right: cσ). Each line (mean prediction
horizon over time) was obtained by averaging the results from simulations of 12,000 trials of the Accuracy task instruction.

Figure 17: Baseline (x-axis) and our inferred (y-axis) values of each participant’s cognitive parameters (lef: σv , center: nv , right:
cσ). Linear regression results are presented as solid lines along with the bands of 95% confdence interval.

cost, compared to the hundreds of hours required for the single
inference in a previous study [34].

8.4.4 Inference range of cognitive parameters. The appropriateness
of the set range can infuence inference performance. The range
should be sufciently wide to contain potential candidates. How-
ever, if the range is set excessively wide, the parameter space to
be searched through BOLFI increases (the number of samples re-
quired for inference increases), and the probability of inferring
incorrect values increases because it is easy to encounter the local

minimum problem during optimization. We defned the range of
each cognitive parameter for inference based on baseline values
collected from participants. In realistic inference scenarios where
the baseline values cannot be acquired, the value ranges that have
been empirically validated in previous studies can be used.

8.4.5 Potential degrading factors for inference. Several potential
factors can degrade inference performance. First, we assumed that
all participants had the same reward formulation for each task in-
struction obtained in Study 2. However, each individual may have a

Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

diferent intrinsic reward formulation. Furthermore, a participant’s
reward formulation may change as they progress through point-
and-click trials. If the user-independent and time-invariant reward
formulation is assumed as in this study, the actual diference in
reward formulation may not be refected in the simulated behavior.

Second, we assumed that the cognitive parameters measured
through the cognitive experiments in Study 1 were transferred to
point-and-click tasks while maintaining their values. However, in
reality, the values of the cognitive parameters may change as the
target task changes. There can also be variations depending on
the user. This may lead to discrepancies between the inferred and
measured baseline values of the cognitive parameters.

Third, the point-and-click model [19] may not perfectly repro-
duce the cursor trajectory in reality although the model is known to
faithfully reproduce the user’s task performance. In this study, we
used the discrepancy between the the observed and simulated cur-
sor trajectories for inference. More considerations than the current
simulation model may be needed to accurately describe user behav-
ior at the trajectory level. For example, in consecutive trials, the user
can use a strategy of preparing the next trial whenever each trial
ends (e.g., moving the cursor to the neutral position); however, the
current simulation model does not consider this preparation pro-
cess. In addition, participants often exhibited suboptimal behaviors
that could not be explained by the simulation model (e.g., modifying
their mouse grips during a trial). Such discrepancies between the
simulation model and the user’s behavioral characteristics lead to
a difcult situation for precise inference.

Furthermore, we assumed that the point-and-click model had
the same reproducibility over a defned range of free parameter
values. In the original paper [19], the authors verifed the model’s
reproducibility in the case when setting the free parameters accord-
ing to the typical values reported in previous studies; however, it
has not been validated that the reproducibility remains the same
over a wide range of parameter values. As the problem of needing
a certain upper bound of σv was discovered (Section 6.2.2), the
precision of the simulation may decrease as the determined free
parameters become far from the typical values, and this may lead
to another potential bias that degrades inference performance.

Finally, as a potential reason for the unsatisfactory inference of
motor noise (nv), nv may not cause a signifcant diference in the
point-and-click behaviors between users; therefore, it is difcult to
infer nv based on the observations of user behaviors. This explana-
tion can be supported by the observation from real users in Study
1, in that we could not fnd a signifcant correlation between the
measured nv and the participant’s task performance. In addition,
as shown in Figure 16, we confrmed that the change in the motor
noise did not signifcantly infuence the action policy of the sim-
ulation models. This result matches with the previous study [19],
which conducted an ablation study of the point-and-click model
and showed that the efect of motor noise on the simulated behavior
was less signifcant than that of visual perception noise.

9 CONCLUSION AND FUTURE WORK
In this study, we proposed and validated an implementation method
for a generalized simulation model that can signifcantly reduce
the computational cost of the inverse modeling of user simulators.

Contrary to the previous approaches that required iterative RL
processes for every new free parameter, our method enabled the
simulated user’s policy to immediately adapt to given free param-
eters without additional optimization; therefore, the efciency of
inverse modeling can be signifcantly improved (e.g., hundreds or
thousands of hours to only a few hours per single inference).

We verifed the proposed method by applying it to the latest
point-and-click simulation model. We inferred the intrinsic reward
settings of participants from their point-and-click behaviors; that
is, we can now plausibly explain the changes in their behavioral
strategies under diferent levels of speed–accuracy trade-of. We
also inferred each participant’s cognitive parameters (visual percep-
tion noise and click precision) involved in their cognitive processes
related to point-and-click tasks. To our best knowledge, this study
enables practical inference of the cognitive parameters of individual
users based on a point-and-click simulation model for the frst time.

There are several promising directions for future research. First,
we independently trained the two types of generalized simulation
models for the inference of reward weights and cognitive parame-
ters in this study, by assuming that all participants had the same
reward formulation. Because of this simplifcation, the inference
performance may be degraded. However, if the simulation model
on both reward weights and cognitive parameters can be gener-
alized, it becomes possible to simultaneously infer an individual
user’s intrinsic reward settings and cognitive parameters from the
observed user behaviors without simplifcation. This simultaneous
inference of the reward weights and cognitive parameters is a chal-
lenging problem because as the number of free parameters that
a model needs to generalize increases, the required training costs
(e.g., time and computational resources) and modulation capacity of
a network increase as well. Thus, a network structure with a higher
modulation capacity (e.g., hypernetworks [29]) can be considered;
however, it may lead to unstable learning.

Second, although our framework signifcantly enhanced the
computational efciency of the inverse modeling of user simu-
lators, there was an inevitable time consumption for the iterative
search of the simulation parameter space. Accordingly, the enabling
of real-time inference of a user’s cognitive parameters is still an
open research question. One possible approach is amortized infer-
ence [18, 55], which constructs a surrogate model that receives
behavioral data and estimates the posterior of cognitive parameters.
If the training of the surrogate model can be performed only with
simulation models, real-time inference based on the observed user
behaviors can become possible using the trained surrogate model.

Finally, the applicability of our efcient inverse modeling ap-
proach to simulation models in other HCI tasks can be investigated.
One research question that can arise when applying our approach
to other HCI tasks is whether our modulated Q-network is also
efective to implement simulation models in other MDP problems.
The feature-level modulation technique has been validated in pre-
vious RL studies [1, 6, 76, 87]; however, it is still unclear how the
presented structure works in higher-dimensional action and state
space than that of point-and-click tasks; therefore, it would be valu-
able to verify its generalization ability. When dealing with such
complex MDP problems, more computation is required to abstract
the task state or free parameters; therefore, a deeper structure of
the Q-network might be necessary.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee

If our method can enable practical inference of a user’s intrinsic
rewards or cognitive characteristics in a wide range of HCI tasks,
it is expected to obtain richer insights from the user’s behaviors
and utilize them for various applications. For example, the inferred
cognitive parameters of a user can be used as a basis for interface op-
timization or personalization. If the interface is adapted to the user’s
cognitive characteristics (e.g., ability-based optimization [65]), the
usability of the interface for each user can be improved. In addition,
assuming that the user’s cognitive characteristics are retained and
transferred to a related task [73], we can predict the same user’s
performance on similar tasks. For example, in the gaming feld, the
prediction of a player’s performance based on inferred cognitive
characteristics can provide valuable insight for difculty design;
it becomes possible to provide the most suitable difculty level to
the player, such that the player can be fully immersed [17]. An
efcient inverse modeling approach can also be extended to quickly
grasp a user’s personal preferences or intentions. Here, a user’s in-
ferred preferences or predicted next action can be used to improve
recommender systems.

ACKNOWLEDGMENTS
This work was supported in part by the Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (NRF-
2018R1D1A1B07043580), in part by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(NRF-2020R1A2C400214612), and in part by the Institute of Infor-
mation and Communications Technology Planning and Evalua-
tion (IITP) grant funded by the Korea government (MSIT) (2020-0-
01361).

REFERENCES
[1] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher.

2019. Dynamic weights in multi-objective deep reinforcement learning. In Inter-
national Conference on Machine Learning. 11–20.

[2] Johnny Accot and Shumin Zhai. 1997. Beyond Fitts’ law: Models for trajectory-
based HCI tasks. In Proceedings of the ACM SIGCHI Conference on Human factors
in computing systems. 295–302.

[3] Johnny Accot and Shumin Zhai. 1999. Performance evaluation of input devices
in trajectory-based tasks: An application of the steering law. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 466–472.

[4] John R Anderson. 1996. ACT: A simple theory of complex cognition. American
Psychologist 51, 4 (1996), 355.

[5] Daniel Bachmann, Frank Weichert, and Gerhard Rinkenauer. 2015. Evaluation of
the leap motion controller as a new contact-free pointing device. Sensors 15, 1
(2015), 214–233.

[6] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Push-
meet Kohli, and Edward Grefenstette. 2018. Learning to understand goal specif-
cations by modelling reward. In International Conference on Learning Representa-
tions.

[7] Gilles Bailly, Antti Oulasvirta, Duncan P Brumby, and Andrew Howes. 2014.
Model of visual search and selection time in linear menus. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 3865–3874.

[8] Sheldon Baron and David L Kleinman. 1969. The human as an optimal controller
and information processor. IEEE Transactions on Man-Machine Systems 10, 1
(1969), 9–17.

[9] George Erich Brogmus. 1991. Efects of age and sex on speed and accuracy of
hand movements: And the refnements they suggest for Fitts’ law. Proceedings of
the Human Factors Society Annual Meeting 35, 3 (1991), 208–212.

[10] Rachael A Burno, Bing Wu, Rina Doherty, Hannah Colett, and Rania Elnaggar.
2015. Applying Fitts’ law to gesture based computer interactions. Procedia
Manufacturing 3 (2015), 4342–4349.

[11] Robin T Bye and Peter D Neilson. 2008. The BUMP model of response planning:
Variable horizon predictive control accounts for the speed–accuracy tradeofs
and velocity profles of aimed movement. Human Movement Science 27, 5 (2008),
771–798.

[12] Stuart K Card, Thomas P Moran, and Allen Newell. 1983. The psychology of
human-computer interaction. Lawrence Erlbaum Associates.

[13] Géry Casiez and Nicolas Roussel. 2011. No more bricolage! Methods and tools to
characterize, replicate and compare pointing transfer functions. In Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technology.
603–614.

[14] Noshaba Cheema, Laura A Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp
Slusallek, and Perttu Hämäläinen. 2020. Predicting mid-air interaction movements
and fatigue using deep reinforcement learning. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–13.

[15] Xiuli Chen, Gilles Bailly, Duncan P Brumby, Antti Oulasvirta, and Andrew Howes.
2015. The emergence of interactive behavior: A model of rational menu search. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 4217–4226.

[16] Ian D Colley, Peter E Keller, and Andrea R Halpern. 2018. Working memory and
auditory imagery predict sensorimotor synchronisation with expressively timed
music. Quarterly Journal of Experimental Psychology 71, 8 (2018), 1781–1796.

[17] Anna Cox, Paul Cairns, Pari Shah, and Michael Carroll. 2012. Not doing but
thinking: The role of challenge in the gaming experience. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 79–88.

[18] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. 2020. The frontier of
simulation-based inference. Proceedings of the National Academy of Sciences
117, 48 (2020), 30055–30062.

[19] Seungwon Do, Minsuk Chang, and Byungjoo Lee. 2021. A simulation model of
intermittently controlled point-and-click behaviour. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–17.

[20] Sarah A Douglas, Arthur E Kirkpatrick, and I Scott MacKenzie. 1999. Testing
pointing device performance and user assessment with the ISO 9241, Part 9
standard. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 215–222.

[21] Simon Farrell and Stephan Lewandowsky. 2018. Computational modeling of
cognition and behavior. Cambridge University Press.

[22] Jocelyn Faubert. 2002. Visual perception and aging. Canadian Journal of Experi-
mental Psychology/Revue canadienne de psychologie expérimentale 56, 3 (2002),
164.

[23] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller.
2021. Reinforcement learning control of a biomechanical model of the upper
extremity. Scientifc Reports 11, 1 (2021), 1–15.

[24] Paul M Fitts. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental Psychology 47, 6
(1954), 381.

[25] Wai-Tat Fu and Peter Pirolli. 2007. SNIF-ACT: A cognitive model of user nav-
igation on the World Wide Web. Human–Computer Interaction 22, 4 (2007),
355–412.

[26] Samuel J Gershman, Eric J Horvitz, and Joshua B Tenenbaum. 2015. Computa-
tional rationality: A converging paradigm for intelligence in brains, minds, and
machines. Science 349, 6245 (2015), 273–278.

[27] Yves Guiard and Olivier Rioul. 2015. A mathematical description of the
speed/accuracy trade-of of aimed movement. In Proceedings of the 2015 British
HCI Conference. 91–100.

[28] Michael U Gutmann, Jukka Corander, et al. 2016. Bayesian optimization for
likelihood-free inference of simulator-based statistical models. Journal of Machine
Learning Research (2016).

[29] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. In International
Conference on Learning Representations.

[30] Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. 2020. Con-
tinual model-based reinforcement learning with hypernetworks. arXiv preprint
arXiv:2009.11997 (2020).

[31] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti
Oulasvirta. 2021. Touchscreen typing as optimal supervisory control. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[32] Jussi PP Jokinen, Sayan Sarcar, Antti Oulasvirta, Chaklam Silpasuwanchai,
Zhenxin Wang, and Xiangshi Ren. 2017. Modelling learning of new keyboard
layouts. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. 4203–4215.

[33] Jussi PP Jokinen, Zhenxin Wang, Sayan Sarcar, Antti Oulasvirta, and Xiangshi
Ren. 2020. Adaptive feature guidance: Modelling visual search with graphical
layouts. International Journal of Human-Computer Studies 136 (2020), 102376.

[34] Antti Kangasrääsiö, Kumaripaba Athukorala, Andrew Howes, Jukka Corander,
Samuel Kaski, and Antti Oulasvirta. 2017. Inferring cognitive models from
data using approximate Bayesian computation. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. 1295–1306.

[35] Antti Kangasrääsiö, Jussi PP Jokinen, Antti Oulasvirta, Andrew Howes, and
Samuel Kaski. 2019. Parameter inference for computational cognitive models
with Approximate Bayesian Computation. Cognitive Science 43, 6 (2019), e12738.

[36] Davis E Kieras and Davis E Meyer. 1997. An overview of the EPIC architecture
for cognition and performance with application to human-computer interaction.

Speeding up Inference with User Simulators through Policy Modulation

Human–Computer Interaction 12, 4 (1997), 391–438.
[37] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–
3526.

[38] Gary D Langolf, Don B Chafn, and James A Foulke. 1976. An investigation of
Fitts’ law using a wide range of movement amplitudes. Journal of Motor Behavior
8, 2 (1976), 113–128.

[39] Byungjoo Lee, Sunjun Kim, Antti Oulasvirta, Jong-In Lee, and Eunji Park. 2018.
Moving target selection: A cue integration model. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 1–12.

[40] Byungjoo Lee and Antti Oulasvirta. 2016. Modelling error rates in temporal
pointing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. 1857–1868.

[41] Esther Levin, Roberto Pieraccini, and Wieland Eckert. 1998. Using Markov
decision process for learning dialogue strategies. In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal Processing. 201–204.

[42] Richard L Lewis, Andrew Howes, and Satinder Singh. 2014. Computational ratio-
nality: Linking mechanism and behavior through bounded utility maximization.
Topics in Cognitive Science 6, 2 (2014), 279–311.

[43] Ray F Lin and Yi-Chien Tsai. 2015. The use of ballistic movement as an addi-
tional method to assess performance of computer mice. International Journal of
Industrial Ergonomics 45 (2015), 71–81.

[44] I Scott MacKenzie and Poika Isokoski. 2008. Fitts’ throughput and the speed-
accuracy tradeof. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1633–1636.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[46] Hee-Seung Moon and Jiwon Seo. 2021. Fast User Adaptation for Human Motion
Prediction in Physical Human–Robot Interaction. IEEE Robotics and Automation
Letters 7, 1 (2021), 120–127.

[47] Hee-Seung Moon and Jiwon Seo. 2021. Optimal Action-based or User Prediction-
based Haptic Guidance: Can You Do Even Better?. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–12.

[48] Andrew Y Ng and Stuart J Russell. 2000. Algorithms for Inverse Reinforcement
Learning. In International Conference on Machine Learning. 663–670.

[49] Antti Oulasvirta, Niraj Ramesh Dayama, Morteza Shiripour, Maximilian John,
and Andreas Karrenbauer. 2020. Combinatorial optimization of graphical user
interface designs. Proc. IEEE 108, 3 (2020), 434–464.

[50] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neuromechanics of a
button press. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–13.

[51] Eunji Park and Byungjoo Lee. 2020. An Intermittent Click Planning Model. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[52] Stephen J Payne and Andrew Howes. 2013. Adaptive interaction: A utility
maximization approach to understanding human interaction with technology.
Synthesis Lectures on Human-Centered Informatics 6, 1 (2013), 1–111.

[53] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. 2016. Terrain-adaptive
locomotion skills using deep reinforcement learning. ACM Transactions on
Graphics 35, 4 (2016), 1–12.

[54] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
Proceedings of the AAAI Conference on Artifcial Intelligence.

[55] Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich
Köthe. 2020. BayesFlow: Learning complex stochastic models with invertible
neural networks. IEEE Transactions on Neural Networks and Learning Systems
(2020).

[56] Robert G Radwin, Gregg C Vanderheiden, and Mei-Li Lin. 1990. A method for
evaluating head-controlled computer input devices using Fitts’ law. Human
Factors 32, 4 (1990), 423–438.

[57] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen.
2019. Efcient of-policy meta-reinforcement learning via probabilistic context
variables. In International Conference on Machine Learning. 5331–5340.

[58] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. 4295–4304.

[59] Roger Ratclif. 1978. A theory of memory retrieval. Psychological Review 85, 2
(1978), 59.

[60] Roger Ratclif and Francis Tuerlinckx. 2002. Estimating parameters of the difu-
sion model: Approaches to dealing with contaminant reaction times and parame-
ter variability. Psychonomic Bulletin & Review 9, 3 (2002), 438–481.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[61] Dario D Salvucci. 2001. An integrated model of eye movements and visual
encoding. Cognitive Systems Research 1, 4 (2001), 201–220.

[62] Dario D Salvucci. 2001. Predicting the efects of in-car interface use on driver
performance: An integrated model approach. International Journal of Human-
Computer Studies 55, 1 (2001), 85–107.

[63] Dario D Salvucci. 2006. Modeling driver behavior in a cognitive architecture.
Human Factors 48, 2 (2006), 362–380.

[64] Dario D Salvucci, Yelena Kushleyeva, and Frank J Lee. 2004. Toward an ACT-R
general executive for human multitasking. In Proceedings of the Sixth International
Conference on Cognitive Modeling. 267–272.

[65] Sayan Sarcar, Jussi PP Jokinen, Antti Oulasvirta, Zhenxin Wang, Chaklam Silpa-
suwanchai, and Xiangshi Ren. 2018. Ability-based optimization of touchscreen
interactions. IEEE Pervasive Computing 17, 1 (2018), 15–26.

[66] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. 2015. Universal
value function approximators. In International Conference on Machine Learning.
1312–1320.

[67] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
experience replay. In International Conference on Learning Representations.

[68] Richard A Schmidt, Howard Zelaznik, Brian Hawkins, James S Frank, and John T
Quinn Jr. 1979. Motor-output variability: A theory for the accuracy of rapid
motor acts. Psychological Review 86, 5 (1979), 415.

[69] R William Soukoref and I Scott MacKenzie. 2004. Towards a standard for point-
ing device evaluation, perspectives on 27 years of Fitts’ law research in HCI.
International Journal of Human-Computer Studies 61, 6 (2004), 751–789.

[70] Nathan Sprague and Dana Ballard. 2003. Eye movements for reward maximization.
In Advances in Neural Information Processing Systems. 1467–1474.

[71] Srinath Sridhar, Anna Maria Feit, Christian Theobalt, and Antti Oulasvirta. 2015.
Investigating the dexterity of multi-fnger input for mid-air text entry. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
3643–3652.

[72] Alan A Stocker and Eero P Simoncelli. 2006. Noise characteristics and prior
expectations in human visual speed perception. Nature Neuroscience 9, 4 (2006),
578–585.

[73] Niels A Taatgen. 2013. The nature and transfer of cognitive skills. Psychological
Review 120, 3 (2013), 439.

[74] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learn-
ing with double q-learning. In Proceedings of the AAAI Conference on Artifcial
Intelligence.

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[76] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. 2019. Multimodal
Model-Agnostic Meta-Learning via Task-Aware Modulation. In Advances in Neu-
ral Information Processing Systems. 1–12.

[77] John H Wearden. 1991. Do humans possess an internal clock with scalar timing
properties? Learning and Motivation 22, 1-2 (1991), 59–83.

[78] Rhiannon Weaver. 2004. Likelihood-based estimation and model selection for
ACT-R cognitive models. (2004).

[79] Jacob O Wobbrock, Edward Cutrell, Susumu Harada, and I Scott MacKenzie. 2008.
An error model for pointing based on Fitts’ law. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1613–1622.

[80] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A Generalized
Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation.
In Advances in Neural Information Processing Systems. 14636–14647.

[81] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. 2020. Multi-task rein-
forcement learning with soft modularization. arXiv preprint arXiv:2003.13661
(2020).

[82] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. 2020. Meta-world: A benchmark and evaluation for
multi-task and meta reinforcement learning. In Conference on Robot Learning.
1094–1100.

[83] Shumin Zhai, Jing Kong, and Xiangshi Ren. 2004. Speed–accuracy tradeof in
Fitts’ law tasks—on the equivalency of actual and nominal pointing precision.
International Journal of Human-Computer Studies 61, 6 (2004), 823–856.

[84] Xiaolei Zhou. 2016. An empirical study of operational bias in steering tasks for
diferent user groups. In International Conference on Network and Information
Systems for Computers. 362–364.

[85] Xiaolei Zhou and Xiangshi Ren. 2010. An investigation of subjective operational
biases in steering tasks evaluation. Behaviour & Information Technology 29, 2
(2010), 125–135.

[86] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. 2008.
Maximum entropy inverse reinforcement learning. In Proceedings of the AAAI
Conference on Artifcial Intelligence. 1433–1438.

[87] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon White-
son. 2019. Fast context adaptation via meta-learning. In International Conference
on Machine Learning. 7693–7702.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Simulation Model of User Behavior
	2.2 Policy Modulation Techniques
	2.3 Inverse Modeling for HCI Research

	3 Inference with a Generalized User Behavior Simulator
	3.1 RL-based User Behavior Simulator
	3.2 Policy Modulation
	3.3 Inferring Free Parameters with User Simulator

	4 Point-and-click simulation model
	4.1 Point-and-Click Scenario
	4.2 Point-and-Click Process
	4.3 MDP Formulation
	4.4 Free Parameters

	5 Study Overview
	6 Study 1: Point-and-Click Inference Dataset
	6.1 Method
	6.2 Results
	6.3 Discussion

	7 Study 2: Inferring Reward Weights
	7.1 Model Training
	7.2 Inference
	7.3 Evaluation and Results
	7.4 Discussion

	8 Study 3: Inferring Cognitive Parameters
	8.1 Model Training
	8.2 Inference
	8.3 Evaluation and Results
	8.4 Discussion

	9 Conclusion and future work
	Acknowledgments
	References

