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Figure 1: (a) Inverse modeling is the process of inferring parameters of user-simulationmodels from given user-behavior data. (b)
Previous inverse modeling approach (e.g., approximate Bayesian computation, or ABC) requires iterating behavior simulations
to seek those parameters best describing the given dataset. The iteration comes at a high computational cost (consuming
even several days) and must be repeated each time a new user behavior is added. (c) In contrast, amortized inference enables
rapid inference for every new user behavior. In the one-time training phase, a neural-network-based density estimator learns
the probabilistic relationship between the model’s parameters and simulated behaviors, at high computational cost. Then,
in the inference phase, the trained density estimator takes the user-behavior observations as input and infers the posterior
distribution of the parameters, at low computational cost: less than a second.

ABSTRACT
There have been significant advances in simulation models pre-
dicting human behavior across various interactive tasks. One issue
remains, however: identifying the parameter values that best de-
scribe an individual user. These parameters often express personal
cognitive and physiological characteristics, and inferring their ex-
act values has significant effects on individual-level predictions.
Still, the high complexity of simulation models usually causes pa-
rameter inference to consume prohibitively large amounts of time,
as much as days per user. We investigated amortized inference for
its potential to reduce inference time dramatically, to mere tens of
milliseconds. Its principle is to pre-train a neural proxy model for
probabilistic inference, using synthetic data simulated from a range
of parameter combinations. From examining the efficiency and pre-
diction performance of amortized inference in three challenging
cases that involve real-world data (menu search, point-and-click,
and touchscreen typing), the paper demonstrates that an amortized-
inference approach permits analyzing large-scale datasets by means
of simulation models. It also addresses emerging opportunities and
challenges in applying amortized inference in HCI.
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1 INTRODUCTION
Simulation models of human–computer interaction (HCI) are com-
puter programs that produce moment-by-moment predictions of an
interactive user’s action (e.g., [30, 31, 49, 51, 54, 68, 74]). In technical
terms, they consist ofmodel parameters and executablemechanisms,
which together produce simulations. The mechanisms represent
the processes that underlie user behavior, whereas models’ param-
eters in general describe cognitive, physiological, or biomechanical
characteristics of a simulated user. For example, parameters in a
model of point-and-click behavior [15] characterize the noise of
the human visual and motor systems, and a model of menu-search
behavior [10] has parameters linked to memory recall. Such pa-
rameters are latent (not directly observable) and differ in values
between individual users [34] or user groups [69]. Through finding

https://doi.org/10.1145/3544548.3581439
https://doi.org/10.1145/3544548.3581439
https://doi.org/10.1145/3544548.3581439


CHI ’23, April 23–28, 2023, Hamburg, Germany Hee-Seung Moon, Antti Oulasvirta, and Byungjoo Lee

the appropriate values, the model can accurately reflect behavioral
differences between individuals.

In inverse modeling, the goal is to infer model parameters – that
is, computationally find the most plausible parameters that explain
a given set of observed behaviors (see Figure 1(a)). In statistics
terms, inverse modeling involves parameter fitting. Solving the
inverse modeling problem could enrich various applications in
HCI. A model with well-inferred parameters can predict individual
users’ behavior in the given task; therefore, related individual-level
parameters often have been regarded as essential ingredients for
personalizing user interfaces [68, 69]. Inverse modeling informs not
only developing explanations from observations but also devising
new simulation models for HCI work. For example, it aids in verify-
ing whether a particular posited mechanism correctly captures the
phenomenon (e.g., matching empirical datasets) while the inferred
parameters correspond to prior knowledge of user attributes or
in identifying the most credible model from among several candi-
dates [34]. To exploit this potential more fully, inverse modeling
often emphasizes finding the entire distribution for a parameter
rather than just a single point value [35].

However, parameter inference for the HCI field’s simulation
models has proven prohibitively computation-intensive: inferring
parameters from observations takes a very long time. The great
complexity of today’s user simulation models – arising from their
hierarchical structure, the need to optimize policies, etc. – rules out
obtaining a probabilistic representation of user behavior for given
inputs to the model. Statisticians refer to the likelihood function as
intractable. Since these conditions preclude fast likelihood-based
inference methods such as maximum likelihood estimation (MLE),
we have had to resort to simulation-based inference techniques,
such as approximate Bayesian computation (ABC) [4]. Relying on
repetitive simulations, they search possible ranges of parameters
to estimate the values that best replicate given observations (see
Figure 1(b)). These methods scale poorly, though [11]. Researchers
report that the parameter-search process requires immense compu-
tation time, from several hours [18, 49] to days [34]. For each new
datum for inference (e.g., observed behavior of an added user), the
entire parameter-search process must be repeated from scratch.

In light of this issue, the paper examines amortized inference
as a novel workflow that mitigates the computation-cost problem
in HCI’s inverse modeling. Amortized inference is an emerging
approach for machine learning designed to address the “likelihood-
free inference problem” [11, 23, 38, 58, 61, 72]. It uses upfront com-
putations to speed up future inference; i.e., the computation cost
for inference is amortized. This is accomplished through training
a proxy model – specifically, a density estimator – by means of
deep neural networks (see Figure 1(c)). The estimator functions to
estimate parameters’ posterior probability when given observed
behavior and to represent the complex posterior distribution over
the full range of these parameters. Training a density estimator
requires a large synthetic dataset produced by running the model
with various parametric inputs that could plausibly occur within
the domain. The training phase entails high computation cost but
takes place only once. Once trained, the density estimator can, in
the second phase (inference), quickly and continually infer individ-
ual users’ model parameters (with the posterior distributions) from
their behavior data.

We studied and developed amortized inference for the purpose
of fitting simulation models to individual-level HCI data. Three
motives lay behind this: an interest in gauging possible improve-
ments in computation efficiency; our wish to study the prediction
accuracy achievable, comparing the levels with those from non-
amortization methods such as ABC [34, 35]; and, on the assumption
of promising results, aims of exploring amortized inference for scal-
ing individual-level fitting to large datasets for HCI. Our central
goal was to see whether amortized inference could aid in estimat-
ing full distributions of cognitive parameters in a user population,
something beyond the reach of previous methods.

We begin the discussion by presenting the novel workflow for
applying amortized inference in HCI. Then, we report on our valida-
tion of it via three challenging cases that entailed fitting previously
published simulation models to datasets from actual users. For each
case, we trained a density estimator from only the model’s simu-
lated data, then used it for inference on real user data. For Case
1 (𝑁=18), we fitted a reinforcement-learning-based user model of
menu search [10] to infer cognitive parameters (e.g., eye fixation
duration) from aggregated user task-performance metrics (e.g., av-
eraged completion time over whole trials). With Case 2 (𝑁=20), we
fitted a point-and-click model [15] to infer parameters of the visual
and motor system. For this, we employed complex trajectory data
(cursor trajectories from multiple trials) from an individual. Case
3 involved fitting a touchscreen-typing model [30] to a large real-
world dataset [56] that had not been used for testing that model
before. We inferred the distributions of model parameters (e.g., such
as the fingers’ motor performance) for 1,057 individual users from
keylog data in an online typing experiment. Also, we report the
results from testing the model on a user task not encompassed by
the training data, and we examine the effect of having a strong
prior. The paper concludes with suggested practical applications of
the low-cost inverse modeling approach, in light of our findings,
and discussion of challenges that remain.

The paper offers three main contributions to inverse modeling
in the HCI field:

(1) Introduction of a workflow for applying amortized inference
in modern user simulation models for HCI, with demon-
strated ability to reduce computation costs significantly

(2) Validating the approach across three published case studies
from CHI conferences, comparing with known baselines,
and reporting efficiency and accuracy measurements

(3) Open-source release of the entire code implementation from
the study1 for future research into amortized inference in
HCI models

2 RELATEDWORK
Simulation models represent latent processes that are theorized
to play out when a user interacts with a computer. This sets the
approach apart from mathematical modeling, which is employed
most often to predict aggregate outputs such as task-performance
metrics [17, 64, 67, 71, 78] and from data-driven models, which
consider the dataset rather than the user [28, 46, 50]. Simulations
based on a cognitive-modeling architecture (GOMS [8], ACT-R [1],

1https://github.com/hsmoon121/amortized-inference-hci
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EPIC [36], etc.) represent depict processes as a system of intercon-
nected processing modules. Early work in this field was restricted
by the need for task-specific manual description of the program
being executed within the given architecture. Recent work aimed
at avoiding the limitations of such hand-coded rule systems applies
machine-learning (ML) methods: a control policy is learned automat-
ically. The policy captures a user’s tendency to act in a particular
way given a particular (internal or external) state. This approach’s
principles fall under the concept of computational rationality, the
notion that those latent processes are organized in service of maxi-
mizing expected value via action [20, 44, 53, 59]. Researchers have
directed RL and, more recently, deep RL toward estimating compu-
tationally rational policies, with applications demonstrated in menu
search [10], point-and-click [15], touchscreen typing [30], button
pressing [54], mid-air pointing [9, 16], learning of layouts [32],
visual search [33], driving [31], and multitasking [18].

The question addressed in this paper is how to determine those
parameters in a simulation model that represent unobservable char-
acteristics of the user. Prior simulation models have either used
values reported in the literature or set the parameters via fitting to
a dataset. With our study, we sought to facilitate user simulation
models’ construction and, furthermore, enable rapid individual-
level simulation by developing and introducing a more efficient
method for inferring parameters from real user behavior.

2.1 Inverse Modeling with User Simulations
The inverse modeling process ascertains the best model param-
eters for a given dataset. After inversion, one can approach the
model’s parameters as hypotheses about the latent characteris-
tics of interest. Where the model represents the user’s behavior
via a simple closed-form expression, researchers can, from the
parameters, calculate the likelihood of any given observation or
a particular discrepancy between a prediction and what actually
happened. Fitts’ law [6, 7, 17, 42, 63], the diffusion model for bi-
nary decisions [64, 65], the classic model for visual perception of
speed [71], and the integrated eye-movement model [67] are some
of the many traditional user models with parameters determined
through MLE or least-squares estimation. This approach does not
permit the simulation models’ inversion, however: since most user
simulation models involve complex relationships without a known
likelihood function, likelihood-based fitting methods (MLE etc.)
cannot invert them. Hence, many previous studies adopt values
from the literature or tune parameters manually.

ABC has emerged as a popular likelihood-free approach for in-
verting simulation models [4, 11, 27]. It offers a systematic way of
finding the parameters that replicate a given dataset well in the
model’s parameter space and thus revealing the parameters’ poste-
rior distribution from the observed data. Kangasrääsiö et al. [34] first
attempted to apply ABC to fit an RL-based simulation of menu selec-
tion. However, its application to user simulation models is plagued
by the time-efficiency problem. Running themultiple simulations re-
quired with various parameter candidates is time-consuming when
the simulation model insists on optimizing its control policy anew
for each candidate. Moon et al. [49] introduced a way of addressing
this. They showed that the control policy of user simulation models
can be generalized across varying model parameters by means of

multi-task RL. Consequently, the ABC process, which had previ-
ously required days of computation [34], may be reduced to one
or two hours. Nonetheless, as is hardly surprising, individual-level
fitting based on ABC is normally restricted to smaller numbers
of users (e.g., 5 [34] or 20 [49]). Though one recent study [18] of
task-interleaving behavior employed ABC to fit an RL-based model
to the data of 211 individuals, fitting this model to an individual
user took 1.5 hours of computation time. Our motivation in delving
into amortized inference was to see whether it could overcome
these issues, thereby opening the door to larger-scale and real-time
applications of inverse modeling in HCI.

2.2 Amortized Inference
Amortized inference consists of “investing upfront computation to
support rapid online inference” [72]. With modern ML methods,
a complex probability distribution can be estimated through vari-
ational inference [5, 38, 77], which uses optimization of tractable
and parameterized distributions to approximate the target distri-
bution. One can amortize this variational inference by building
a neural proxy model, a conditional density estimator that learns
an effective mapping from a given observation (e.g., an individ-
ual’s behavior) to an approximate distribution (e.g., a posterior of
model parameters) [38]. Once trained through upfront computation,
the conditional density estimator enables rapid inference of the
posterior of the parameters conditioned on the given observation.

Researchers have examined many ML methods in efforts to solve
this conditional density estimation problem [11, 19, 45, 55]. One
critical factor is the neural networks’ representation capacity –
they must be able to learn the complex probability distribution.
Early methods combined Gaussians, to estimate the posterior dis-
tribution, with trained neural-network models (e.g., mixture den-
sity networks), to predict the means and covariance of the Gaus-
sians [57, 62]. Though these methods performed sufficiently well for
several inverse problems, it shows limited ability to represent more
complex posterior distributions (multimodal ones especially). As a
emerging approach, normalizing flows [58, 66] approximate com-
plex distributions through sequential bijective transformation steps,
starting with a simple normal distribution. Here, invertible neural
networks (INNs) model the bi-directional conversion between the
target distribution and a tractable one. This invertibility constitutes
the unique advantage of normalizing flows over other variational
inference models (e.g., a variational autoencoder [38]). A tractable
distribution that can be converted to the target distribution in a bi-
jective manner renders it possible to calculate that target’s posterior
density precisely and provides for easy sampling of the parameters
from it. Both properties (tractable density and ease of sampling)
are beneficial in the training and inference processes for density
estimators. Therefore, recent research into amortized inference has
welcomed normalizing flows [2, 21, 23, 40, 58]. BayesFlow [61] is a
good example of recent work demonstrating the utility of normal-
izing flow models (RealNVP [14]) for amortized inference.

Non-HCI applications of amortized inference have exploited its
flexibility; it is easy to apply to most simulation models yet does not
necessitate critical assumptions [13, 22, 60], but the HCI field has
been devoid of attempts to amortize inference for simulationmodels,
with the exception of Murray-Smith et al.’s successful inference of
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a finger’s 3D pose from sensor data via a conditional variational
autoencoder [51]. We fill this gap with the first presentation of
a general workflow for applying amortized inference to the HCI
field’s simulation models.

3 WORKFLOW FOR AMORTIZED INFERENCE
For presenting the workflow of applying amortized inference to
the inverse problem of user simulation models, we formulate the
inverse problem thus: Let us suppose there are three components.
1) A user simulation model outputs simulated user behavior when
given the state of an interaction task as input, with the model’s
parameters representing cognitive-physiological characteristics of
a user; 2) prior distributions of the model parameters characterize
prior knowledge of the plausible values referring to those user char-
acteristics; 3) and observation data capture aspects of user behavior
in the form of observational data collected from one or more users.
To solve the inverse problem is to identify the posterior distribution
of the model parameters via the given observation and arrive at the
best estimated parameter values for observed users.

At the heart of amortized inference is training a conditional den-
sity estimator such that it can estimate the posterior density quickly
with a given observation as input. Accordingly, the workflow can
be summarized in terms of the following steps.

(1) Simulating user behaviors: Training of the conditional den-
sity estimator requires a large dataset composed of ground-
truth pairs: parameters and corresponding user behaviors.
With a user simulation model, we generate sufficient num-
bers of user behaviors with various parameter combinations
sampled from the prior distributions.

(2) Building and training the density estimator: The density
estimator is built with neural-network structures able to
represent the parameters’ complex posterior distribution
from the given high-dimensional observation data. We train
the density estimator to approximate the true posterior by
using the simulated dataset from step 1.

(3) Inferring via the trained density estimator: Finally, we de-
ploy the trained density estimator to infer the posterior of
model parameters from actual user behaviors. Its inference
process consumes very little computation time (e.g., tens of
milliseconds).

While the first two steps are computationally expensive (requiring
1–2 days), these one-time actions enable rapid inference in step 3
for every new user’s data.

3.1 Notation
We express the operation of a user simulation model as𝒚 = 𝑓 (𝒙 ;𝜽 ),
where 𝒚 represents the model’s output (i.e., user behavior), 𝒙 repre-
sents the input (i.e., task state), and 𝜽 represents the parameters (i.e.,
a user’s cognitive-physiological characteristics). The prior of model
parameters is denoted by 𝑝 (𝜽 ), and their posterior when behavior
data are given is 𝑝 (𝜽 |𝒚). We use the hat symbol (∧) to highlight
variables for data estimated or predicted through models (e.g., 𝜽
for the estimated model parameters and �̂� for the predicted user
behavior). Finally, the subscript “𝑜” refers to data observed from
real users, as in 𝒚𝒐 for the observed user-behavior data.

3.2 Simulation of User Behavior
With user simulation models, we can generate a training dataset
for the density estimator, consisting of plausible sets of 𝜽 and sim-
ulated 𝒚 under them, in the form of (𝜽 ,𝒚) pairs. Recent simula-
tion models reproduce user behavior (𝒚) through the sequential
decision-making of an RL agent: the agent obtains partial (or noisy)
information about the task environment’s state in keeping with
an individual’s cognitive-physiological bounds (dictated by mecha-
nisms’ limits [47, 67, 71] and variable parameters, 𝜽 ) and chooses
an action that achieves maximum utility. In RL terms, the simu-
lated user’s internal decision-making process is formulated as a
partially observableMarkov decision process (POMDP). The agent’s
decision-making function (i.e., control policy) can be implemented
as a neural-network model that, from the observed state, ascertains
the action, and deep RL techniques such as the deep Q-network
(DQN) algorithm [15, 30, 48] afford optimizing it. One problem
that most current simulation models face here is that their control
policy is usually optimized within fixed bounds (i.e., with fixed 𝜽 )
[10, 15, 30]. To collect the training data under various 𝜽 values, one
must adjust the control policy for each 𝜽 . Rather than take the time-
consuming path of optimizing a control policy anew for each 𝜽 ,
this workflow follows recent multi-task RL approaches; i.e., a single
generalized control policy is trained for a family of tasks (solving
for a POMDP family parameterized by 𝜽 ). Here, a neural-network-
based policy model is implemented that receives 𝜽 as external input
alongside the observed task state. Modulated Q-network [49] and
optimal control ensembles [41] exemplify such multi-task RL ap-
proaches’ recent use. By optimizing the policy model subject to
the multi-task environment (i.e., episodes with various 𝜽 ), we are
able to achieve a generalized optimal policy. In consequence, the
training dataset can be simulated, where 𝜽 ∼ 𝑝 (𝜽 ), 𝒚 = 𝑓 (𝒙 ;𝜽 ).

3.3 Building and Training a Density Estimator
The conditional density estimator’s objective is rapid estimation of
the posterior (𝑝 (𝜽 |𝒚)) from given behavior data (𝒚). For the general
case, it has to meet two crucial requirements. Firstly, it must deal
with various data types present in user-behavior observations (e.g.,
a simple summary of multiple task trials or full details of each)
and extract meaningful features from them as a fixed-size vector.
Secondly, when given the extracted features, it should be capable
of representing even highly complex distributions of 𝑝 (𝜽 |𝒚), in-
cluding multiple modes (peaks). To address both requirements, we
designed the density estimator to consist of an encoder network and
a conditional INN (see Figure 2). The estimator learns bi-directional
conversion between a latent variable (denoted as 𝒛) from a nor-
mal distribution N(0, I ) and 𝜽 from a complex distribution 𝑝 (𝜽 |𝒚),
when given𝒚. Therefore, 𝜽 = 𝑔𝝓 (𝒛;𝒚) and 𝒛 = 𝑔−1𝝓 (𝜽 ;𝒚), where 𝑔𝝓
represents the forward conversion through the density estimator
with neural-network weights 𝝓. Because the latent variable (𝒛) fol-
lows a normal distribution, it is easy to sample 𝒛 and calculate its
exact density. Therefore, with the bijective transformation between
𝒛 and 𝜽 , we can achieve easy sampling and density estimation for
𝑝 (𝜽 |𝒚) as well.
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Figure 2: (a) A simplified representation of our conditional density estimator for amortized inference. (b) An encoder network
taking user-behavior data 𝒚 as input and extracting a fixed-size feature vector �̃�. The network’s design can be varied to suit the
type of behavior data, such as summary features of multiple trials (fixed-size) or all information from the trials (variable-size).
(c) With the given �̃�, a conditional INN providing bi-directional conversion between latent variables 𝒛 and model parameters 𝜽 ,
by following multiple flow steps. Each step ensures perfect invertibility between two distributions, and stacking the flow steps
makes it possible to produce a complex posterior distribution 𝑝 (𝜽 |𝒚) from a simple normal distribution 𝑝 (𝒛).

3.3.1 The encoder network. An encoder network (Figure 2(b)) out-
puts a fixed-size feature vector (denoted by �̃�) from a given ob-
servation (𝒚). The design of this network can vary, depending on
the type of 𝒚. We consider the most basic 𝒚 first: simple summary
statistics for a user’s multiple task trials (e.g., average completion
time or task scores). In this case, the observation 𝒚 from each user
has the same size, so the encoder network can be constructed with
a multi-layer perceptron, or MLP (that is, multiple linear layers
coupled with nonlinear activation). When, on the other hand, 𝒚 is
the full set of observation data from multiple i.i.d. task trials (e.g.,
all the completion times and task scores for each trial), the size
for observation set (𝒚) can be varied by user on the basis of the
number of trials completed. To extract a fixed-size output from this
variable-size input in a permutation-invariant manner (i.e., without
restrictions imposed by trial order), we utilize recently developed
query–key–value (QKV) attention structures [29, 76]. Supplement
A.1 provides further details.

3.3.2 The conditional invertible neural network. The conditional
INN (Figure 2(c)) targets approximating 𝑝 (𝜽 |𝒚) in accordance with
the feature vector of the given behavior data (�̃�). The INN models
bijective transformation between 𝑝 (𝜽 |𝒚) and 𝑝 (𝒛) (=N(0, I )) when
given �̃�. To this end, it is designed with several flow steps [58, 66],
each of which is an invertible transformation between inputs and
outputs, especially conditioned on �̃�. As flow steps stack more
deeply, it is possible to express more complex distributions, start-
ing from a normal distribution (observe how 𝑝 (𝒛) transforms to
𝑝 (𝒛1) → · · · → 𝑝 (𝒛𝑛−1) → 𝑝 (𝒛𝑛) = 𝑝 (𝜽 |𝒚) over 𝑛 flow steps in
Figure 2(c)). We implemented each flow step with a recent normal-
izing flow model, Glow [37] (see Supplement A.2 for details).

3.3.3 The training process. The encoder network and the condition-
ally reversible network are trained once, from the data generated by
the user simulation models2 (see Figure 3(a)). The training’s objec-
tive is to minimize the Kullback–Leibler divergence (KLD) between
2Although this paper addresses the simulation of training data and the training of
the density estimator separately (in Section 3.2 and Section 3.3, respectively), those

true posterior 𝑝 (𝜽 |𝒚) and our estimated posterior 𝑝𝝓 (𝜽 |𝒚); hence,
our goal is to find 𝝓∗, the optimal neural-network weights for the
density estimator that approximates the true posterior as closely as
possible. That is,

𝝓∗ = argmin
𝝓
E𝑝 (𝜽 ) [KLD(𝑝 (𝜽 |𝒚) | |𝑝𝝓 (𝜽 |𝒚))] .

Here, the objective function can be solved via stochastic gradient
descent methods with the loss function L(𝝓) below (the literature
provides details of the derivation and its validated foundation [61]).
If we have a batch of 𝑀 pairs of true 𝜽 and 𝒚 from the simulated
training dataset (per Section 3.2), then

L(𝝓) = 1
𝑀

𝑀∑︁
𝑖=1

©«
∥𝑔−1𝝓 (𝜽 (𝑖 ) ;𝒚 (𝑖 ) )∥22

2 − log
���det (𝑱 (𝑖 )𝑔𝝓

)���ª®¬ , (1)

where det
(
𝑱 (𝑖 )𝑔𝝓

)
denotes the determinant of the Jacobian matrix

𝜕𝑔−1𝝓 (𝜽 ;𝒚)/𝜕𝜽 at (𝜽 (𝑖 ) ,𝒚 (𝑖 ) ). The function’s first term refers to a
negative log of N(𝒛 |0, I ); therefore, minimizing L(𝝓) causes 𝒛 to
follow N(0, I ).

3.4 Inference with a Trained Density Estimator
With the trained density estimator, we can rapidly infer the pos-
terior of model parameters (𝜽 ) from real users’ observed behavior
(𝒚𝒐 ), as illustrated in Figure 3(b). Sampling the latent variable 𝒛 from
N(0, I ) and computing 𝜽 via 𝑔𝝓 (𝒛;𝒚𝒐) is equivalent to sampling
𝜽 from its true posterior 𝑝 (𝜽 |𝒚𝒐) if one assumes perfect conver-
gence of density-estimator training [61]. Therefore, obtaining a
plausible set of 𝜽 from the given 𝒚𝒐 comes at very low computa-
tional cost, only that of passing the sampled 𝒛 and 𝒚𝒐 through the
trained density-estimator network, which can be performed on the
order of milliseconds. With the set of plausible 𝜽 candidates, we can
approximate the full posterior distribution 𝑝 (𝜽 |𝒚𝒐) by means of
well-known methods, such as kernel density estimation (KDE), and

simulation and training processes may be combined; for instance, we can simulate𝑀
pairs of (𝜽 ,𝒚 ) for every gradient descent step during the training.
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Figure 3: A diagram outlining our amortized inference pro-
cedure with density estimator. (a) In the training phase, 𝜽
sampled from the prior distribution 𝑝 (𝜽 ) and 𝒚 simulated
on its basis are fed to the density estimator for obtaining 𝒛
as output (i.e., 𝜽 → 𝒛 with given 𝒚). The density estimator
is trained to make the output 𝒛 follow a unit normal distri-
bution. (b) With the trained density estimator, we can infer
model parameters from the observations: behavior data from
real users. The observed behavior 𝒚𝒐 and 𝒛 sampled from a
unit normal distribution are given to the trained density es-
timator, which outputs 𝜽 (i.e., 𝒛 → 𝜽 with given 𝒚𝒐). Using a
batch of the output 𝜽 candidates, we can estimate the poste-
rior distribution 𝑝 (𝜽 |𝒚).

determine the estimated values of model parameters 𝜽 , typically
using maximum a posteriori (MAP) estimation [34].

3.5 Use of a Point Estimator
Should distribution information be unnecessary, one can simplify
the estimator model’s structure by seeking only point-estimate val-
ues of the parameters. This can yield the benefit of decreased size of
the neural-network model, thereby reducing the computation costs
for training and inference. The workflow presented above supports
training a point estimator accordingly. Instead of a conditional INN
in a density estimator, one can build a point estimator with any
feedforward network (e.g., an MLP) that directly outputs a point
estimate from a feature vector extracted from the encoder network.
With the same training dataset, the process would use a general
regression loss (e.g., mean squared error) rather than the training
loss of Equation 1. The inference process would consist only of

feeding forward the given observation data, without any need for
sampling of the latent variable 𝑧. Further on (in Section 8.3), we
report the quantitative results from testing how using point estima-
tors as opposed to density estimators affects inference performance.

4 OVERVIEW OF CASE STUDIES
The three case studies demonstrate the suitability of the workflow
for amortized inference in connection with fitting a range of user
simulation models to user-behavior datasets. Our reporting on them
below addresses inverse modeling problems that involve progres-
sively more complex observed behaviors (from simple summary
features to full information of multiple i.i.d. trials) and larger user
datasets (from 𝑁 of 18 to 1,057). Figure 4 presents the nature of the
observed behaviors and inferred model parameters in each case.
The case studies are characterized thus:

• Case 1: fitting the menu-search model [10] to a user-behavior
dataset where 𝑁=18 [3], a setting with relatively simple
behavior observations consisting of only summaries of the
features of users’ task trials overall (e.g., average completion
time)

• Case 2: fitting the point-and-click model [15] to a dataset
with 𝑁=20 [49] that covers more complex observations, en-
compassing full behavior data (e.g., cursor trajectories) from
hundreds of i.i.d. task trials per user

• Case 3: fitting the touchscreen-typing model [30] to a much
larger dataset [56], extending to more than a thousand indi-
vidual users (𝑁=1,057)

To fit the models, we trained the density estimator solely on the
basis of synthetic data generated by user simulation models. The
learned estimator then was assessed against the empirical dataset
in each case. In Case 1, we used the empirical dataset against which
the authors of menu-search model assessed their model’s (forward)
predictions. By contrast, in Case 2 and 3, we chose the datasets
that differ from what the authors originally used for their models’
assessment, showing that inverse modeling with our density esti-
mator can be well-generalized to various datasets. For Case 2, we
assessed the density estimator against a dataset that was collected
after the original point-and-click model’s release. Our work with
Case 3 involved a large-scale empirical dataset not previously used
for inverting the touchscreen-typing model.

5 CASE 1: MENU SEARCH
The menu-search model [10] simulates a user’s behavior in search-
ing for a target item in a linear menu interface. The goal of the
simulated user is to either select the given target item (if it is present
in the menu) or declare that the target item does not exist (if it
is not). The simulated user can discover each item’s information
by looking directly at it, by looking at an item above or below it
(with peripheral vision), or through memory recall. Via sequential
decision-making directed by an optimized control policy, the model
replicates a user’s eye movements during menu search and, thereby,
predicts the completion time of each trial (see prior publications
for further details [10, 34]). For our study, we decided to infer four
of the menu-search model parameters, following the lines of earlier
work [34] that used ABC. These inferred parameters 𝜽 are
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Figure 4: An overview of the three case studies. Each case entails inferring the parameters for a particular user simulation
model (menu search [10], point-and-click [15], and touchscreen typing [30]) from the observed behavior of individual users.

• 𝑑fix : the duration for eye fixation
• 𝑑sel : the duration for item selection
• 𝑝rec : probability of recalling all items’ information during
the first fixation period

• 𝑝sem: probability of investigating the item above or below
the fixation target via peripheral vision

For the inverse modeling, we used a dataset of menu-search be-
havior [3] from 21 users (13 of them female; mean age 21.1, 𝜎=3.54).
It comprised the task-completion time and eye-movement data for
each menu-search trial. From the full dataset, our study considered
included onlymaterial frommenu layouts that the simulationmodel
covers (i.e., with eight items grouped by semantic similarity); hence,
we employed a dataset of 18 participants’ behavior (150 trials per
user, on average). We used the same observation data𝒚 as in [34] for
model fitting: a 1-D vector containing the task-completion times’
mean and standard deviation values for each case, with the target
present or absent. This represents one of the simplest and most
common settings of inverse modeling problems in HCI, with user
behavior visible only from aggregate data.

5.1 Implementation Details
With the workflow described in Section 3, we applied amortized
inference as presented below.

5.1.1 Model simulation. We generated a dataset of simulated be-
havior 𝒚 under the various values of 𝜽 . While the original model
used a control policy optimized for one fixed 𝜽 , we generalized
the policy to ensure optimal decision-making with each value of 𝜽 ,
implementing the control policy via a modulated Q-network [49],
which can behave optimally for the various sets of 𝜽 after training.
Supplement B.1 elaborates on both the network and its training.

During the model simulation, 𝜽 is sampled from given prior
distributions 𝑝 (𝜽 ) for each trial. We chose the same 𝑝 (𝜽 ) as the
earlier work [34], thus: the prior for 𝑑fix is a truncated normal
distribution where (mean, std, min, max) = (300 ms, 100 ms, 0 ms,
600 ms); the prior for 𝑑sel is a truncated normal where (mean, std,
min, max) = (300 ms, 300 ms, 0 ms, 1000 ms); that for 𝑝rec is uniform
where (min, max) = (0.0, 1.0); and 𝑝sem’s prior is a uniform one
where (min, max) = (0.0, 1.0). We sampled 262K distinct 𝜽 values
from 𝑝 (𝜽 ) and simulated 256 trials for each sampled 𝜽 . In total,
the training dataset consists of 67M simulated trials. The entire
simulation took 1.5 hours (in wall-clock time) with 16 CPU cores
(AMD Ryzen 9 5950X, 3.5 GHz).

5.1.2 Density-estimator training. Then, we built and trained the
conditional density estimator by using the simulation dataset formed.
In this menu-search scenario, 𝒚 is a simple one-dimensional fixed-
size vector, so we opted for a simple MLP as the encoder network
to extract �̃� from given 𝒚. We implemented the conditional INN to
consist of five Glow steps, for all our cases (1–3). A batch of (𝜽 , 𝒚),
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(a) (b)Menu search – parameter recovery Menu search – estimated posterior

Figure 5: Amortized inference results with the menu-search model (Case 1): (a) parameter recovery (𝑥-axis: ground-truth model
parameter values, 𝑦-axis: inferred model parameter values) from 100 parameter samples; (b) estimated posterior distributions
from the user-behavior dataset. Baseline represents the model parameter values fitted via ABC [34].

Table 1: Behavior-prediction accuracy with themenu-searchmodel (Case 1), characterized via distances between the observation
and predictions (baseline, group-level, and individual-level fit with amortized inference). Baseline represents prediction using
the model fitted via ABC [34]. Amortized inference leads to more accurate predictions for empirical data by allowing fitting the
user model to the level of an individual. For each row, the closest results are presented in green and the second-closest ones are
shown in light green.

Behavior
Distance
metric Baseline [34]

Amortized inference

Group-
level fit

Individual-
level fit

Completion time
(with target)

Mean diff. 76.691 65.810 43.597
KLD 0.0741 0.0454 0.0108
MMD 3.4193 2.8592 0.4787

No. of fixations
(with target)

Mean diff. 0.0635 0.1399 0.0018
KLD 0.8681 0.3735 0.7285
MMD 0.3850 0.2098 0.3395

Completion time
(no target)

Mean diff. 65.972 267.240 186.825
KLD 0.1007 0.0901 0.0524
MMD 6.8355 5.9524 0.9976

No. of fixations
(no target)

Mean diff. 0.3397 0.1662 0.0798
KLD 3.9804 3.8756 1.8807
MMD 0.3603 0.5503 0.1288

with size 512, was sampled from the dataset and used to compute
the loss (Eq. 1) for gradient descent updating. We performed 600K
training steps (i.e., gradient descent updates), with a total training
time of approximately 10 hours on a standard workstation with
the aforementioned CPU and an NVIDIA GeForce RTX 3080 GPU.
Supplement B.2 gives further details of the density-estimator model
implemented and its training.

5.1.3 Inference. By sampling 1,000 latent variables 𝒛 from a unit
normal distribution and taking 𝒚𝒐 as input to the density estimator,
we sampled 1,000 𝜽 candidates. We estimated 𝑝 (𝜽 |𝒚𝒐) by applying
KDE with the sampled candidates for visualization, and we deter-
mined our 𝜽 as the MAP value of 𝑝 (𝜽 |𝒚𝒐). The processes for cases
1–3 all applied the same inference procedure.
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Figure 6: Comparison of empirical observations and behavior predictions in the case of the menu-search model (Case 1).

5.2 Evaluations
We evaluated the performance of amortized inference from the fol-
lowing two perspectives: howwell the conditional density estimator
can recover ground-truth model parameters from the simulated
data (parameter recovery) and how well the parameter values in-
ferred from the empirical user data can actually predict the user’s
behavior (behavior prediction).

To judge the former, we randomly sampled 100 sets of 𝜽 from
𝑝 (𝜽 ) and simulated𝒚 from them. Then, we measured the coefficient
of determination (𝑅2) between the ground-truth 𝜽 and the density
estimator’s prediction (𝜽 ). Here, 𝑅2 represents the proportion of
the variation in the predicted 𝜽 that can be explained by variation
in the true 𝜽 . Hence, higher values are better; the range is 0 to 1, so
𝑅2 = 1 denotes a perfect prediction for 𝜽 .

Next, we assessed the model’s behavior-prediction performance
with real users’ data when using the fitted parameters with amor-
tized inference. We investigated the two scenarios for applying
amortized inference: group-level and individual-level fitting. For
group level, one model parameter set was estimated from the all-
users dataset. In the individual-level fitting, on the other hand,
model parameter sets were estimated for each individual user’s
behavior data. We measured the prediction accuracy as the distance
between the simulated behavior under the estimated parameters
(�̂�′) and the actual behavior of the same users (𝒚′𝒐 ).3 We considered
three distinct distance metrics: 1) mean difference, 2) KLD,4 and 3)
maximummean discrepancy (MMD) [24]. Mean difference captures
the absolute difference between the mean values from the behavior
features in the trials in each case (ground-truth observation vs.

3We split the user-behavior data used for model parameter estimation from thematerial
for distance measurement; that is, 𝒚′

𝒐 comes from those trials not used for parameter
estimation.
4In strict terms, this is not a distance metric, since it does not satisfy the two distri-
butions’ symmetry condition. However, for simplicity, the paper presents KLD as a
distance metric alongside other metrics.

model prediction). In contrast, KLD and MMD estimate the differ-
ence between distributions. The closer KLD and MMD are to 0, the
closer the behavior-feature distributions of �̂�′ and 𝒚′𝒐 are.

We measured the distance with regard to four features of menu-
search behavior: each trial’s completion time and number of fixa-
tions, when the target is present and when it is absent (2 × 2). We
compared the resulting fit (group- and individual-level) from amor-
tized inferencewith the baseline: use of the earlier model parameters
fitted via ABC [34]. This baseline represents applying conventional
non-amortized inference to fit the parameters at group level.

5.3 Results
The inference process, run a single time for each dataset, took about
10 ms with our trained density estimator (i.e., both group- and
individual-level fitting). Accordingly, individual-level inference for
18 users consumed only about 200 ms in total. This is a significant
improvement over previous (ABC) methods, which took 37 h for
group-level fitting for the same user dataset [34].

Figure 5(a) depicts parameter-recovery performance with our
trained density estimator, showing the correlation between the
ground-truth values and our predicted values for each model pa-
rameter. The results show that the trained estimator predicts most
parameters with a high coefficient of determination (𝑅2=0.74 for
𝑑fix , 0.87 for 𝑑sel , and 0.82 for 𝑝rec). It was more difficult to estimate
𝑝sem from the given behaviors (𝑅2=0.33).

Figure 5(b) shows the estimated posterior distribution from the
actual behavior measured from all users. Our estimated posterior
distribution closely matches the baseline model parameters, which
lie within its high-probability region. Table 1 shows the distance
between the observed behavior and the three model predictions.
While the baseline, group-level, and individual-level model fits with
amortized inference all replicate the observations reasonably well
(see Figure 6 for the full histograms of observed and simulated be-
haviors over trials), from among the three it was our individual-level
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fitting that made the most accurate prediction, with the smallest dis-
tance by nine out of the 12 metrics (4 behavior features × 3 distance
metrics). On the other hand, there was no noticeable difference
between the baseline and our group-level fit, which showed the
smallest distance by one and two metrics, respectively; that is, the
amortizing approach offered inference performance comparable to
ABC’s (in the same group-fitting cases) while vastly improving the
computation cost (from 37 h to 10 ms).

6 CASE 2: POINT-AND-CLICK
Case 2’s point-and-click model [15] simulates the user behavior of
selecting a distant target on a computer screen by means of a mouse
device. In each trial, one circular target with a random size appears
at a random location onscreen and moves at a random but constant
speed in a random direction. The goal of a simulated user is to click
the mouse button with the cursor positioned within the target. The
agent visually perceives the target’s and cursor’s information at
every timestep. Proceeding from the perceived information, the
simulated user iteratively updates its motor plan and decides, per
decision-making by its control policy, whether to click during the
motor plan. The original publication presents the simulation model
more fully. In this study, we inferred four parameters of the model:

• 𝜎𝑣 : visual perception noise
• 𝑛𝑣 : signal-dependent motor noise
• 𝑐𝜎 : precision of one’s internal clock
• 𝑇ℎ,𝑚𝑎𝑥 : maximum length of the motor plan a user can build
(i.e., prediction horizon)

In a previous study [49], using ABC, the authors attempted to
infer the first three parameters, each of which represents a user
capability – for visual perception, motormovement, and click action,
respectively. The final parameter (𝑇ℎ,𝑚𝑎𝑥 ) can represent a user’s
motor-planning capability in addition.

For the inverse modeling, we used their dataset from the point-
and-click behavior of 20 users (13 of them female; mean age 30.4,
𝜎=8.65) [49]. The following data were collected for each trial: the
user’s task performance (success/failure and completion time), the
trial’s initial state (the radius, position, and velocity of the target
and the cursor’s position and velocity), and the trajectories of the
target and cursor (positions every 50 ms). We used 𝒚 encompassing
all of the aforementioned data from 600 trials. This represents
a more complex class of inverse modeling problem in HCI than
Case 1, in that it involves complex user behaviors, of multiple
types (with different semantics and data types), in each of the i.i.d.
trials. In addition, the empirical data include values, measured
participant-specifically through separate experiments, for the three
cognitive-physiological capabilities (𝜎𝑣 , 𝑛𝑣 , and 𝑐𝜎 ) The previous
study showed that inferred parameter values for the point-and-click
model could describe the measured abilities.

6.1 Implementation Details
Most aspects of the implementation for amortized inference were
the same as in Case 1. We implemented the control policy of the
point-and-click model with a modulated Q-network, using the prior
work’s network structure and optimization method [49]. This gen-
eralization of the control policy enables single-model simulation of

point-and-click behavior 𝒚 under the various values of 𝜽 . Supple-
ment C.1 details the control-policy structure and optimization.

The simulation’s prior distributions 𝑝 (𝜽 ) too were determined
from the earlier work [49]: the prior for 𝜎𝑣 is a log-uniform distri-
bution where (min, max) = (0.069, 0.415); that for 𝑛𝑣 is log-uniform
with (min, max) = (0.145, 0.413); and that for 𝑐𝜎 is a log-uniform
one where (min, max) = (0.055, 0.400). The previous report did not
cite any prior knowledge of the range for 𝑇ℎ,𝑚𝑎𝑥 , so we used a
simple uniform prior for it where (min, max) = (0.5 s, 2.5 s). We
sampled 262K distinct 𝜽 values from 𝑝 (𝜽 ) and simulated 32 trials
for each sampled 𝜽 . In total, 8M simulated point-and-click trials
were generated for density-estimator training. With 16 CPU cores,
the simulation process took seven hours.

In contrast against Case 1’s 𝒚, consisting of only summary fea-
tures across trials, Case 2’s consists of multiple trials’ data. The
number of observed trials can be varied across users (i.e., 𝒚 size
can be varied). Accordingly, we implemented the attention-based
encoder network to extract fixed-size features (�̃�) from variable-size
observations (𝒚). One million gradient descent steps (with batch
size 32) were performed with the simulated training dataset. The
total training time, approximately 30 h, was longer than Case 1’s
because of the more complex observation data and network struc-
ture involved. Supplement C.2 elaborates on the density-estimator
model implementation and training.

6.2 Evaluations
We evaluated the performance of our amortized inference from
the same angles considered in Case 1: parameter recovery and
behavior prediction (detailed in Section 5.2). With regard to the
first, we assessed how well the trained density estimator could
infer 100 sets of ground-truth parameter values from the simulated
behaviors. For Case 2, the investigation additionally considered
the estimator’s ability to recover real users’ measured cognitive-
physiological capabilities from each user’s point-and-click behavior.

In this case too, we assessed behavior-prediction performance
with regard to baseline, group-level, and individual-level fit. We
measured the distance between the point-and-click behavior simu-
lated via the fitted model parameters (�̂�′) and actual user behavior
(𝒚′𝒐 ) in terms of three features: 1) trial-completion time; 2) the cur-
sor’s final click location relative to the target, with the target’s
radius as the unit (hence, a value below 1 indicates that the click
fell within the target); and 3) the cursor’s total travel distance in
each trial. The baseline case for comparison came from simulated
behavior where the participant-specific cognitive-physiological ca-
pability values [49] furnished the model’s parameters; therefore,
the baseline here represents obtaining each individual user’s unique
characteristics to inform the simulation, through laborious mea-
surement processes.

6.3 Results
Since each dataset’s inference process took 125 ms with our trained
density estimator, individual-level inference for 20 participants’
datasets used just 2.5 s. In contrast, the previous study reported
30 h for the same individual-level inference (using ABC alongside
a policy-modulation technique for rapid model simulation).
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(a) Simulated behvaior

Point-and-click – parameter recovery

(b) Actual user behavior

Figure 7: Parameter-recovery results with the point-and-click model (Case 2): the results with (a) simulated behavior data
(𝑥-axis: ground-truth-model parameter values, 𝑦-axis: inferred values) and (b) the actual user-behavior data (𝑥-axis: each user’s
measured capability values, 𝑦-axis: inferred values). Note that, since the earlier study [49] did not measure 𝑇ℎ,𝑚𝑎𝑥 for each
participant, parameter recovery for 𝑇ℎ,𝑚𝑎𝑥 was not examined with actual user behavior.

Table 2: Behavior-prediction accuracy under the point-and-click model (Case 2), represented via distance between the actual
observations and the model’s predictions. Baseline represents prediction of the model with participant-specific values of the
measured capabilities [49]. For each row, the closest results are presented in green and the second-closest are in light green.

Behavior
Distance
metric Baseline [49]

Amortized inference

Group-
level fit

Individual-
level fit

Completion time
Mean diff. 0.0110 0.0751 0.0433

KLD 6.5330 8.7802 5.3777
MMD 0.0868 0.2040 0.1041

Click endpoint
(normalized)

Mean diff. 0.5189 0.1384 0.0021
KLD 0.3568 0.3077 0.2012
MMD 0.0334 0.0059 0.0072

Cursor travel
distance

Mean diff. 0.0339 0.0288 0.0302
KLD 16.874 14.173 13.608
MMD 0.0302 0.0261 0.0252

Figure 7 presents the parameter-recovery performance with the
density estimator, for both simulated behavior data and actual users’
behavior data. With the former, the density estimator predicts the
model parameters with high (𝑅2=0.94 for 𝜎𝑣 , 0.67 for 𝑐𝜎 , and 0.96
for 𝑇ℎ,𝑚𝑎𝑥 ) and moderate (𝑅2=0.38 for 𝑛𝑣 ) coefficients of determi-
nation. From the actual user behavior, it was possible to predict
their cognitive-physiological capability values moderately well (𝑅2

= 0.37 for 𝑛𝑣 and 0.61 for 𝑐𝜎 ) and at low levels (𝑅2=0.23 for 𝜎𝑣 ). This
inference performance was comparable with that of the ABC-based
prior technique [49], which estimated the same participants’ capa-
bility values 𝜎𝑣 and 𝑐𝜎 moderately well (with 𝑅2 values of 0.50 and
0.62, respectively) but failed to infer 𝑛𝑣 . The 𝑅2 values for the in-
ferred 𝜎𝑣 are slightly lower in our amortized inference case, but we



CHI ’23, April 23–28, 2023, Hamburg, Germany Hee-Seung Moon, Antti Oulasvirta, and Byungjoo Lee

Point-and-click – estimated posterior

Figure 8: Estimated posterior distributions from the empir-
ical dataset with amortized inference in Case 2. Baseline
represents the averaged values for the users’ measured capa-
bilities [49].

succeeded in inferring 𝑛𝑣 and achieved a huge speed improvement
via amortized inference (to 2.5 s from 30 h).

Figure 8 plots the estimated posterior distributions of each model
parameter from using our density estimator on the aggregated be-
havior data of all participants. The averaged values of the partic-
ipants’ measured capabilities (𝜎𝑣 , 𝑛𝑣 , and 𝑐𝜎 ) lie well within the
high-probability region of the estimated posterior distributions.
Table 2 shows the distance between the actual observation and
the three model predictions: baseline, group-level, and individual-
level fits (Figure 9 presents the full histogram for each simulated
behavior). From among the three models, the individual-level fit
(with amortized inference) showed the results closest to actual user
behavior by the majority of metrics (5 out of the 9). That is, the
individual-level model fit outperformed the baseline method, in
which the parameters were determined in line with each individual
user’s measured capabilities.

7 CASE 3: TOUCHSCREEN TYPING
The touchscreen-typing model examined, by Jokinen et al. [30], sim-
ulates user behavior of typing on a cell phone or other touchscreen
device with a finger. Here, the simulated user’s goal is to reach
optimal typing performance by allocating two limited resources:
finger movement and visual attention. Sharing these resources,
the simulated user can either type a character in the target sen-
tence or proofread the text produced so far (as dictated by the
control policy’s decisions). If proofreading reveals an error, the
model simulates the finger movement to correct the typed text (i.e.,
backspace over it). The finger-movement simulation balances speed
against accuracy (faster finger movements are noisier) by applying
a weighted homographic (WHo) model [25]. Thus, the model can

simulate aggregate typing performance (e.g., typing speed and ac-
curacy), error-correction processes during a trial, and finger and
eye movements over time. Further details can be found in [30]. Our
study inferred the following three parameters:

• 𝑝𝑜𝑏𝑠 : probability of noticing an error directly from finger
movement (without visual attention to the typed text)

• 𝛼 : finger movements’ speed–accuracy bias (for WHo model)
• 𝑘 : all motor resources for finger movement (for WHo model)

In the original publication, the authors adopted values of 𝛼 (0.6)
and 𝑘 (0.12) from prior literature [69], and the 𝑝𝑜𝑏𝑠 value was hand-
tuned (to 0.7).

Our inverse modeling employed a dataset much larger than
those in cases 1–2. It comprises 37,000 users’ touchscreen-typing
behaviors with mobile devices [56]. We filtered this for only data
from English-speaking users who typed with one finger used a
QWERTY layout, and we also excluded trials wherein participants
employed intelligent text-entry techniques. In consequence, the
material for parameter fitting in Case 3 consisted of 14,277 trials’
data, from 1,057 users (665 of them female; mean age 28.10, 𝜎=10.67),
with 13.5 trials per user, on average. As in Case 2, 𝒚 consisted of
the behavior data from all the i.i.d. trials. From each typing trial,
we used the following data: 1) words per minute (WPM), obtained
by dividing typed-text word count by trial-completion time; 2)
error rate, calculated by dividing the Levenshtein distance [43]
between the given and typed text by the longer one’s length; 3) the
number of backspace presses per trial; 4) keystrokes per character
(KSPC), consisting of the number of press inputs divided by that of
characters typed; 5) and the length of the given text piece.

7.1 Implementation Details
The control policy of the original touchscreen typing model, com-
posed of two distinct network models (actor and critic networks),
was obtained by proximal policy optimization (PPO) [70]. We gen-
eralized this control policy to operate under a range of model pa-
rameters, in the same manner as for the modulated Q-network used
in Case 1 and 2. We implemented and trained both networks to take
given model parameters (𝜽 ) in addition to the observed task state
as inputs. Such a method of conditioning for actor-critic networks
on the basis of given parameters has been verified [41] under the
name “optimal control ensembles.” Supplement D.1 gives further
details.

The prior distributions of the model parameters were set such
that the one for 𝑝𝑜𝑏𝑠 is a uniform distribution where (min, max)
= (0, 1); the prior for 𝛼 is a truncated normal where (mean, std,
min, max) = (0.6, 0.3, 0.4, 0.9); and that for 𝑘 is a truncated normal
where (mean, std, min, max) = (0.12, 0.08, 0.04, 0.20). We sampled
66K distinct 𝜽 values from 𝑝 (𝜽 ) and simulated 16 trials for each one
sampled. Therefore, 1M simulated typing trials were obtained for
density-estimator training. The simulation process took 14 hours
for 16 CPU cores.

Since 𝒚 consists of multiple trials’ data (as in Case 2), we imple-
mented our attention-based encoder network to extract fixed-size
features from the variable-size observations; for the training, we
used 600K gradient descent steps (batch size = 100), and training
took 15 h in all. Supplement D.2 provides details.
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Empirical observations Baseline model Ours (group-level �t) Ours (individual-level �t)
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Cursor travel distance [m]
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Figure 9: Comparison of empirical observations and behavior predictions with the point-and-click model (Case 2).

(a) (b)Touchscreen typing – parameter recovery Touchscreen typing – estimated posterior

Figure 10: Amortized inference results with the touchscreen-typing model (Case 3): (a) parameter recovery (𝑥-axis: ground-truth
parameter values, 𝑦-axis: inferred values) from 100 parameter samples; (b) estimated posterior distributions from the user-
behavior dataset. Baseline represents the parameter values from the original study [30] which were imported from literature.

7.2 Evaluations
As with the other cases, we assessed parameter recovery (the accu-
racy of inferring 100 sets of ground-truth model parameters from
the given simulated behavior) and behavior prediction (the accu-
racy of replicating real users’ behavior through simulation of group-
and individual-level fitted models). For evaluating the latter, we
measured the distance between the real user’s behavior and the
model’s prediction, considering the following four behavior fea-
tures: 1) WPM, 2) error rate, 3) backspace presses, and 4) KSPC. We
used behavior simulated on the basis of the previously reported
model parameters [30] as a baseline for comparison. In that the

original study borrowed the parameter values from prior litera-
ture without fitting the model to empirical datasets, the baseline in
Case 3 represents common practice in the HCI field.

With Case 3, we showcase one of the promising areas for apply-
ing high-computational-efficiency amortized inference: large-scale
analysis of user data. With reference to the large-scale dataset [56],
we can report on how the inferred cognitive parameters of indi-
viduals are distributed in a population (𝑁=1,057), in terms of two
demographic factors: age and gender.
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Table 3: Behavior-prediction accuracy with the touchscreen-typing model (Case 3). Baseline represents model prediction
with imported parameter values from literature as in [30]. Each row’s reporting of the distance between the observed and
model-predicted values presents the closest results in green and the second-closest in light green.

Behavior
Distance
metric Baseline [30]

Amortized inference

Group-
level fit

Individual-
level fit

WPM
Mean diff. 6.8432 5.4317 1.7769

KLD 1.8028 1.0935 0.1787
MMD 1.0835 0.5457 0.0376

Error rate
Mean diff. 0.9548 0.4310 0.2327

KLD 1.5111 1.1527 0.4968
MMD 1.3805 1.2656 1.2410

Backspace count
Mean diff. 0.8204 3.5884 2.0648

KLD 0.1328 0.3374 0.1059
MMD 0.1202 0.3785 0.2295

KSPC
Mean diff. 0.0865 0.0439 0.0098

KLD 3.5048 2.5738 0.9203
MMD 0.4665 0.4284 0.4007

Empirical observations Baseline model Ours (group-level �t) Ours (individual-level �t)
WPM

Error rate [%]

Backspace count

KSPC

WPM

Error rate [%]

Backspace count

KSPC

WPM

Error rate [%]

Backspace count

KSPC

WPM

Error rate [%]

Backspace count

KSPC

Figure 11: Comparison of the actual behaviors observed and those predicted under the touchscreen-typing model (Case 3).

7.3 Results
The inference process took about 15 ms per given behavior dataset.
Accordingly, the time for the individual-level inference of 1,057
users’ data with amortized inference was only 20 seconds in total.

Figure 10(a) depicts the parameter-recovery performance from
the simulated behavior with our trained density estimator. Our
trained estimator predicted all three model parameters with a high
level of coefficient determination (𝑅2=0.82 for 𝑝𝑜𝑏𝑠 , 0.71 for 𝛼 , and
0.96 for 𝑘). Figure 10(b) plots the estimated posterior distributions
from the aggregated behavior data of all 1,057 users. The baseline
model parameters (adopted from the literature) fall within the esti-
mated posterior distribution but not its high-probability region. We

interpret this as related to a limitation of using values imported from
the literature: they are not always entirely representative of the
dataset, and other confounding factors may be present. Our inferred
parameters’ superiority to the literature-derived baseline ones for
behavior prediction may support this interpretation. Table 3 attests
that, by most metrics, our group-level fitted model parameter values
replicate real user behavior better than the baseline parameter val-
ues do. Furthermore, fitting the model at individuals’ level yielded
even better prediction performance, with the predictions best ap-
proaching real user behavior. The full set of behavior histograms is
reproduced in Figure 11.
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Figure 12: Amortized inference can facilitate analyzing large-scale user datasets, identifying how the inferred cognitive-
physiological parameters of individuals are distributed in the population. Here, inferred touchscreen-typing model parameters
for 1,057 individual users are plotted against user age (upper row) and gender (lower row).

Figure 12 shows how the parameter values inferred for each
individual participant are distributed population-wise in terms of
both age and gender. We detected a significant correlation between
the users’ age and inferred 𝑘 , which represents the motor resources
behind a user’s finger (Pearson’s 𝑟=0.18, with 𝑝<0.001). Therefore,
data from typing behavior might reveal that younger people show
more extensive finger-related motor resources (i.e., lower 𝑘). This
result is consistent with previous work [69]. We found no signifi-
cant age correlation for the other two parameters, 𝑝𝑜𝑏𝑠 (probability
of noticing an error from finger movement) and 𝛼 (the movement’s
speed–accuracy bias), with 𝑝-values of 0.580 and 0.088, respectively.
On the other hand, regarding gender, we discovered a significant
difference between male and female user groups’ inferred 𝑘 values
(independent-samples 𝑡-test: 𝑡=3.20, with 𝑝<0.001). This result re-
vealed finger motor resources to be stronger in female than in male
users, even though the latter were older (the female users’ mean
age being 29.75 years and males’ 25.10). The other two parameters
did not differ significantly in either respect between the gender
groups (𝑝=0.151 for 𝑝𝑜𝑏𝑠 ; 0.457 for 𝛼).

8 ROBUSTNESS ANALYSIS
Robustness is constancy of performance irrespective of the varia-
tions in the internal and external factors [39]. For example, infer-
ence performance might be sensitive to the researcher’s choice of
training settings or to distributional shifts in test data. By examin-
ing robustness, we can verify how reliably an approach performs
with uncertain, noisy real-world data or copes with changing the
training setting to meet particular needs. Our discussion here exam-
ines how inference performance gets affected when the estimators

Table 4: Parameter-recovery performance (𝑅2 values) with
the point-and-click model (Case 2) for the three conditions:
full data, same split, and crossed split. The trained density
estimator showed a certain degree of robustness when tested
on a user task not covered by the training data, a few dips
in performance aside. Δ represents the value obtained by
subtracting the result in the first of these conditions from
each under the split conditions; in two cases, |Δ| ≥ 0.1 (shown
in red) or 0.1 > |Δ| ≥ 0.05 (light red).

Inferred
parameter

Full
data

Training on split dataset

Same
split Δ

Crossed
split Δ

𝜎𝑣 0.930 0.937 0.007 0.930 0.000

𝑛𝑣 0.406 0.429 0.023 0.294 −0.112
𝑐𝜎 0.680 0.718 0.038 0.698 0.018

𝑇h,max 0.857 0.854 −0.003 0.798 −0.059

tackle unseen user behavior, from different spaces of task variables
and prior distributions of model parameters. Then, we consider the
performance effects of employing not a density estimator (with full
posteriors) but a point estimator (predicting point values for the
parameters).

8.1 Out-of-Distribution Data
Testing with out-of-distribution data – data subject to distributions
different from the training data’s – can clarify the robustness to
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Table 5: Performance (𝑅2 values) with the touchscreen-typing model (Case 3) for various prior settings, demonstrating that the
density estimator’s performance suffered when evaluated on the basis of priors different from the training data. Δ represents
the value obtained by subtracting the result of the model learned under Literature-prior from the result of that learned under
Uniform-prior; the results where |Δ| ≥ 0.1 are shown in green or red, and those where 0.1 > |Δ| ≥ 0.05 are in light green or red.

Inferred
parameter

Evaluated under Uniform-prior Evaluated under Literature-prior

Uniform→
Uniform

Literature→
Uniform Δ

Uniform→
Literature

Literature→
Literature Δ

𝑝obs 0.869 0.466 0.403 0.638 0.818 −0.180
𝛼 0.767 0.514 0.253 0.099 0.705 −0.606

𝑘 0.951 0.308 0.643 0.888 0.958 −0.070

unseen user behavior. To test the density estimator with out-of-
distribution data, we assumed a situation wherein differences in
the task variables given to a user in each trial cause different user
behavior to emerge. We split the dataset used with the point-and-
click model (Case 2) in half in the task-variable space consisting
of the given pointing target’s radius and speed. Three distinct ex-
periment setups were prepared, full data, in which the estimator
was trained on the entire dataset and tested on each split dataset;
same split, with the estimator trained on and tested on the same
subset; and crossed split, with testing on one portion of the two-
part split and testing on the other. Table 4 shows the results for
averaged parameter-recovery performance (i.e., 𝑅2 values) for both
split datasets in each condition. The 𝑅2 values for both parameters
(𝑛𝑣 and𝑇h,max ) were lower in the crossed split condition than in full
data or same split. Despite the performance decreases, however, the
density estimator in crossed split was able to recover all parameters,
with high (𝜎𝑣 , 𝑐𝜎 , and 𝑇h,max ) or low (𝑛𝑣 ) 𝑅2 levels, from the data
of the unseen task.

8.2 Prior Sensitivity
Having strong priors of model parameters can enhance inference
performance. In inverse modeling problems in HCI, the priors
are the scientifically plausible distributions of a user’s cognitive-
physiological characteristics. Therefore, they are often set to have
a peak at the most plausible external values validated by the lit-
erature [34]. To measure the impact of priors, we compared the
following two conditions, for ways in which a practitioner may set
the priors: Literature-prior, with distributions weighted at plausi-
ble values adopted from the literature (as in the case studies), and
Uniform-prior, using flattened distributions from the literature prior,
without any weighting for external values.We evaluated the density
estimator trained with each prior for all three cases. The results for
the touchscreen-typing task (Case 3), which is the most challenging
scenario, are presented below (Supplement E presents the results for
cases 1 and 2). Each estimator’s parameter-recovery performance
degrades when it grapples with synthetic data from the other pri-
ors (see Table 5). In fitting of the model to real user data at the
level of individuals, using the literature-based prior outperformed
use of the uniform prior by most behavior-prediction metrics (see
Table E5 in Supplement E). However, we discovered that even the
naive Uniform-prior density estimator could outperform previous
work’s fitting baselines (ABC- or hand-tuning-based).

Table 6: Parameter-recovery performance (𝑅2 values) for the
touchscreen-typing model (Case 3) with the point estimator
and density estimator, which performed comparably in their
parameter recovery. Δ represents the value obtained by sub-
tracting the result of the density estimator from that of the
point estimator; there were no cases where |Δ| ≥ 0.05.

Inferred
parameter

Point
estimator

Density
estimator Δ

𝑝obs 0.855 0.818 0.037

𝛼 0.677 0.705 −0.028

𝑘 0.956 0.958 −0.002

8.3 Choice between Point and Density
Estimators

As researcher needs dictate, one can train a point estimator instead
of a density estimator, using the same workflow (see Section 3.5 for
details). We compared the two estimator types’ inference perfor-
mance, with all three case studies. Tables 6 shows the results for
Case 3 (Supplement F presents the results for the other two cases).
We implemented a point estimator by replacing the conditional
INN with an MLP that has two hidden layers (of 512 units each),
which directly output the optimal parameter values. There was
no noticeable difference in parameter recovery between the two
estimator types when tested on a simulated dataset. In addition,
when fitted to the actual user dataset at individuals’ level, they were
comparable in performance, both proving superior to the baseline
(See Table F5 in Supplement F). One notable difference was in the
computation cost per inference: the point estimator, taking about
5 ms, was three times faster than the density estimator.

9 DISCUSSION
Across multiple cases, we have demonstrated four key benefits of
amortized inference in inverse modeling for HCI research:

• High predictive accuracy for individual users: Our reported
levels of accuracy were on par with or better than with non-
amortized approaches (e.g., ABC).

• Computational efficiency: Fitting a model to an individual
user’s data, which used to demand hours or days (with ABC),
took only 10–125 ms for the same data (cases 1–2).
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• Large-scale parameter inference: Thanks to high efficiency,
amortized inference aids in estimating how model parame-
ters are distributed in a population and how they correlate
with factors not accounted for in the model (e.g., age and
gender in Case 3).

• A principled approach to uncertainty: As ABC does but un-
like regular optimization-based approaches such as Nelder–
Mead [52], inverse modeling with amortized inference af-
fords estimating posterior distributions of model parameters.
This holds value for HCI work with small-scale or noisy
observations of users.

The following review of core aspects of the case studies’ re-
sults discusses our findings’ implications and what might affect
performance.

Inference efficiency. The complexity of the behavioral data behind
inference (𝒚) affects computational efficiency. In Case 1’s conditions,
𝒚 consists of summary features, 1-D data with only a feature dimen-
sion. The other cases had a trial dimension added (since all data,
from multiple trials, were used). Case 2 involved a time dimension
additionally (because each trial’s data included a time-series trajec-
tory), so it had the most complex 𝒚 (3-D data, with trial, time, and
feature dimensions). This necessitated a more complicated encoder
network, which, in turn, increased the inference time. Nonetheless,
inference time did not grow with the number of observed trials
in 𝒚 (Figure 13(a)), thanks to the parallel computation of neural
networks (i.e., multiple trials’ computations can be processed as a
batch).

Parameter recovery. We discovered that parameter-recovery per-
formance may differ not only between models but also within the
parameters of a model. While our trained density estimator could
achieve decent recovery performance for most parameters, a few
parameters showed lower 𝑅2 values (e.g., 𝑝sem in Case 1 and 𝑛𝑣 in
Case 2). One influential factor is the identifiability of the model
parameters. If there are multiple solutions for a certain parameter
that could produce the same model output, that parameter can be
difficult to isolate from the given data. This is sometimes due to
the model itself (e.g., model sloppiness [26]) or small quantities
of given data. One can put amortized inference to use for rapidly
revealing gaps in the given data as one examines the convergence of
parameter-recovery performance with increasing dataset sizes. For
example, from Figure 13(b) we can identify the number of observed
trials at which performance starts to converge; we need at least
16 trials to recover 𝑘 with nearly optimal accuracy and 128 trials
for 𝛼 in Case 3. The approximation gap and amortization gap are
two additional elements that could influence parameter-recovery
performance [12]. The approximation gap refers to error resulting
from limits to the density estimator’s representation power; that
is, it results from our attempt to approximate the true posterior
distribution by using a surrogate (parameterized) distribution. The
amortization gap refers to error caused by training a density estima-
tor for the entire dataset, as opposed to optimizing an approximate
distribution for each individual user’s data.

Individual-level fitting. Amortized inference fitted the parameters
better at the level of individuals than at that of the whole user
group. Across all three cases, parameters fitted at individuals’ level

No. of observed trials

No. of observed trials

(a)

(b)

Inference time per dataset

Parameter recovery performance

Figure 13: The effect of dataset size (i.e., the number of task
trials observed) on (a) inference time per dataset and (b) pa-
rameter recovery from simulated data, in Case 3 (touchscreen
typing). We obtained the result lines by averaging 1,000 iter-
ations for each size of dataset. Shading denotes the standard
deviation across iterations.

showed the greatest accuracy. That said, there were exceptions
(e.g., individual-level fitting was not superior to group-level fitting
for backspacing in Case 3). This might be a result of constraints
in the behavior space that the simulation model can express; for
example, some behavioral features reproduced by the model may
display inherent mutual dependencies. If the constraints are not
aligned with real users’ behavior space, it will be impossible to
replicate their behavior features in full. Then, one must find the
closest possible point instead.

Scaling up the number of users. We were able to infer model pa-
rameters for 1,057 individuals by means of amortized inference,
whereas the previous highest number was 211, with ABC [18]. The
inference process for all users took only 20 seconds in total. This
level of efficiency is remarkable and signals that the method scales
up well. It affords analysis that captures even smaller effects in
datasets and can connect them with parameters of a simulation
model. The previously unreported difference we revealed between
male and female users’ motor resources in finger movement (𝑘) is
a case in point (Figure 14).

Robustness to distributional shifts. The density estimator showed
some robustness to distribution shifts between training and test
data, especially in dealing with data from unseen task conditions
(e.g., the pointing target’s speed in Case 2) or different priors. Still,
to achieve better inference performance against empirical data, one
needs to hone the priors from the literature and make the training
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Correlation signif. (age–   ) -test signif. (gender–   )

No. of participants No. of participants

Figure 14: Amortized inference helps simulation modeling
explain smaller effects contained in datasets. The plot shows
how increasing the number of participants in individual-
level inference affects statistically reliable findings: the cor-
relation between inferred 𝑘 and the participants’ age (at left)
and the difference in inferred 𝑘 betweenmale and female par-
ticipants, in Case 3, touchscreen typing (at right). The result
lines were obtained by averaging 1,000 iterations with par-
ticipants randomly sampled from the full dataset (𝑁=1,057).
Shading denotes the standard deviation across iterations.

data as comprehensive as possible. Cases of other types can inform
testing of density-estimator robustness. Questions remain with
regard to, for instance, training data generated by mechanisms that
do not perfectly match real-world data.

Point estimator vs. density estimator. Our findings suggest that the
two estimator types manifest a tradeoff relationship. A point es-
timator can further reduce the computation cost of inference, yet
a density estimator might be more beneficial in several cases: 1)
rigorously checking the reliability of the inferred values, 2) identi-
fying multiple plausible explanations for observations, and 3) using
the inferred posterior as a new prior to perform multi-round infer-
ence that is expected to achieve higher accuracy (e.g., in sequential
neural posterior estimation [23, 57]).

9.1 Applications
Together, the robustness and low computation cost brought by
amortized inference offer an exciting vista for future application of
simulationmodels in 1) adaptive user interfaces, 2) recommendation
systems, 3) diagnostic tools for user modeling, and 4) large-scale
behavior analysis tools.

For the first of these, parameters inferred for a user could form
the basis for adapting an interface optimally for the individual. For
example, simulation models aid in optimizing a keyboard layout
for people with such impairments as dyslexia or tremor [68]. Adap-
tation of this sort via simulation models has been handled mainly
on a non-real-time basis thus far [68, 73, 74]. Our approach could
open the door to developing adaptive user interfaces in a new way,
enabling repetitive processes of inference from observations and op-
timization in real time. Secondly, amortized inference could advance
interactive recommendation systems through inferring a user’s tem-
poral intention and interest. For instance, future simulation models
could assist in better disentangling various underpinnings of click
data (individuals’ preference, intention, curiosity, etc.). As for de-
veloping user models with theory-based mechanisms, parameter
inference enables a proposed model to be evaluated with actual

user data, and amortized inference can speed up the investigation.
Also, parameter identifiability is often of interest to modelers; the
shape of the inferred posterior distribution informs how well each
parameter can be distinguished via what is observable. With this
approach, one can ensure the validity of datasets in future experi-
ments and identify the number of observations required for valid
inferences. Finally, low-cost inverse modeling enables applying sim-
ulation models to identify humans’ latent capabilities from datasets
orders of magnitude larger than feasible ever before. For example,
by inversely modeling an individual’s behavior, one could recover
the attributes of the user’s motor and cognitive systems – muscle
activation, memory recall, and many more.

10 CONCLUSION AND FUTUREWORK
We have found great promise in the proposed workflow for ap-
plying amortized inference to solve the inverse modeling problem
in HCI at lower computational cost. However, research still must
address several challenges, for wider applications of amortized in-
ference. Firstly, the field lacks best practice for choosing which of
the various observable-behavior data to use for inference and in
what form. Several tradeoffs merit further study too; e.g., using
all the observable data and letting the network extract effective
features may lead to better performance [61] but slows the training
and inference processes. The second problem remaining is that of
appropriate prior distributions for model parameters, especially
where the literature’s reference values are unapplicable or other-
wise limited. Thirdly, it would be worthwhile to investigate the
density estimator’s upper limits and potential losses when dealing
with more model parameters. A recent project outside the HCI field
[22] succeeded in inferring as many as 31 parameters, thus attesting
to the neural network’s promise. A final issue, by no means least,
is compensating for discrepancies between models’ simulations
and the real-world behavior data described (e.g., from imperfect
mechanisms or the “reality gap” [75]) and making the amortized
inference more resilient.
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