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Figure 1: We present a novel simulation-based target inference approach. In contrast to the existing data-based methods that
use human data for training, our inference model is trained with a large and diverse amount of realistic simulated motions: (a)
A user’s target selection can be assisted by an inference network that proactively infers the user’s intended target from their
prior movements. (b) Our simulated user, based on a human biomechanical model, closely mimics user motion during target
selection tasks, accommodating various task configurations and human motor variations.

ABSTRACT
Selecting a target in a 3D environment is often challenging, espe-
cially with small/distant targets or when sensor noise is high. To
facilitate selection, target-inference methods must be accurate, fast,
and account for noise and motor variability. However, traditional
data-free approaches fall short in accuracy since they ignore vari-
ability. While data-driven solutions achieve higher accuracy, they
rely on extensive human datasets so prove costly, time-consuming,
and transfer poorly. In this paper, we propose a novel approach that
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leverages biomechanical simulation to produce synthetic motion
data, capturing a variety of movement-related factors, such as limb
configurations and motor noise. Then, an inference model is trained
with only the simulated data. Our simulation-based approach im-
proves transfer and lowers cost; variety-rich data can be produced in
large quantities for different scenarios. We empirically demonstrate
that our method matches the accuracy of human-data-driven ap-
proaches using data from seven users. When deployed, the method
accurately infers intended targets in challenging 3D pointing con-
ditions within 5–10 milliseconds, reducing users’ target-selection
error by 71% and completion time by 35%.

CCS CONCEPTS
• Human-centered computing → Pointing devices; Interac-
tion techniques; • Computing methodologies → Machine
learning;Modeling and simulation.
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1 INTRODUCTION
Selecting a target is a fundamental task in human–computer in-
teraction. In traditional desktop environments, users frequently
engage in target selections by using a mouse pointer to navigate
dense menus with high efficiency and accuracy. In contrast, fast
and accurate target selection in virtual- and augmented-reality
(VR/AR) environments remains challenging, because of several fac-
tors: i) sensor limitations causing imprecision and lag [73, 90], ii)
the absence of haptic feedback [88], iii) complications related to
depth perception [83, 98], and iv) inherent noise in motor behav-
ior [20, 86]. Prior studies show that target-selection performance in
VR is particularly difficult when targets are small or distant [5, 55].

Target inference is the problem of identifying user’s intended
target before the cursor arrives at the target, using as input sensor
data gathered during movement. The inference can inform assistive
mechanisms, for expedited target selection [3, 31, 60, 65, 93, 100].
However, accurate target inference is not straightforward. Themain
challenge arises from the inherent variability of human movement.
When selecting a given target, users differ in their trajectories
toward it in response to their preferences (e.g., prioritizing speed
vs. accuarcy of selection), biomechanical factors (strength, limb
lengths, posture, etc.), and contextual factors. Even a single user
selecting the same target twice exhibits variability.

Previously, target-prediction methods have focused on user mo-
tions’ endpoints, representing potential endpoints for each target
through Gaussian models [4, 30, 89, 102]; likelihood-based infer-
ence techniques are then applied that inversely infer the target from
the endpoints. However, this approach, by excessively simplifying
human motion, compromises accuracy in capturing users’ inten-
tions, particularly from high-variability motions. More recently,
deep neural networks have been trained to predict the intended
targets from trajectory data in a supervised manner [18, 49]. Suc-
cesses notwithstanding, this approach can be heavily dependent
on extensive training datasets collected from humans. Inadequate
training data can lead to poor inference performance when used
for new users or conditions. Therefore, a varied user pool is needed
for capturing variability within the population.

Can we generate substantial and realistic movement data to train
accurate inference models without involving human participants?
In this paper, we introduce a novel target-inference method that
employs simulation, grounded in a biomechanical model, to gener-
ate realistic human motion priors. Our key novelty lies in leveraging
simulators to generate training motion data, mimicking the com-
plexity and variability of human movements. We exploit a natural
assumption: users’ movements align more closely with biomechan-
ical optima than with random motions. By estimating these optima

through biomechanical simulation, we enable model-based infer-
ence that by design accounts for human-like variations in body
posture, size, motor noise, etc.

Our method constructs a simulated user capable of visually per-
ceiving the task environment as humans do and performs motor
actions in alignment with human kinematic joint movements. Ac-
cordingly, we obtain a control policy for the simulated user that
captures rational decision-making at every timestep, ultimately
reproducing the human target-selection behavior. The simulated
users permit gathering high-volume motion data while incurring
little cost. So that the data reflect the full spread of human behaviors,
our process considers various physical attributes (e.g., motor noise)
and preferences (e.g., desired speed–accuracy tradeoff). Systemati-
cally altering the settings for these attributes lets us generate a rich
set of trajectories. These trajectories are then used to train a neural
proxy model that identifies the probability distribution of intended
targets in light of the observed trajectory thus far. The model thus
derived infers the target in milliseconds probabilistically. Finally,
deploying the inference model aids in users’ target selection in 3D
environments, in real-time.

Our simulation-based target-inference approach offers clear ben-
efits. Relative to pre-existing data-driven approaches, this method
does not require gathering human data from the real world, so it
affords higher efficiency, scalability, and significantly reduced costs.
The method adapts to new task environments such as different
arrangements of target objects or new interaction techniques. Fur-
thermore, our model specifies its confidence in the inferences. That
allows the target-selection assistance technique to ascertain the
optimal moment to assist users in selecting the most likely targets
while minimizing any adverse effects if the inference is not a high-
confidence one. This is a crucial advantage over heuristics-based
approaches, like proximity-based techniques, where uncertainty
information is often ignored.

We evaluated three key aspects of our method experimentally:
i) the quality of our simulator’s motion replication, ii) inference
performance with human data, and iii) improvement in users’ target
selection when the inference methods are deployed in assistance
techniques. In a VR setting using raycasting-based selection, our
simulator faithfully replicated human users’ performance dynamics
for different levels of selection difficulty (Study 1). The inference
network, trained solely on the simulated data, infers users’ intended
targets within 5–10 ms per timestep. Each inference process oper-
ates using the partial trajectory data observed from the beginning
of each trial, without requiring knowledge of the trajectory’s total
length. With human trajectory data, the network achieved an accu-
racy of 88% when it observed the first 80% of each trial (Study 2).
We also showed human-data-driven approach’s performance signif-
icantly depends on the volume of training data: to achieve accuracy
levels similar to or higher than ours, a minimum of seven users,
each providing 250 trials, was required. This inference process im-
proved target-selection performance considerably (Study 3): when
targets are densely arranged, human users were 71% more accurate
and 35% faster than with naive selection, and accuracy was 10%
higher than with pre-existing forms of heuristic assistance. While
our method’s accuracy was comparable with the heuristic baseline,
it enhanced user performance by making use of the confidence
estimates provided by the network.
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To sum up, this paper presents three main contributions. We
release our dataset and code as open-source.1

(1) A simulation-based target-inference method: To the
best of our knowledge, this is the first paper to train a target-
inference model using synthetic data from biomechanical
simulations. Sharing our end-to-end implementation and its
evaluation offers valuable insights for this line of research.

(2) Realistic simulation of target-selection motion: Unlike
previous efforts to generate end-point predictions, our ap-
proach replicates human-like motion with bodily variability
during target selection by employing biomechanical models.

(3) Demonstration of efficacy in target-selection assistance:
Our approach improves selection techniques by leveraging
the inference outputs. With the high-speed inference, it ac-
commodates rapid visual fresh rates of VR environments. We
empirically show that integrating our inference into VR se-
lection techniques significantly enhances user performance.

2 RELATEDWORK
2.1 Techniques Facilitating Target Selection
Reducing the burden on the user in target selection can improve
overall efficiency of tasks with an extensive range of interfaces, from
traditional desktop ones [31, 57, 93, 100, 103] and touchscreens [7,
53, 94] to immersive VR systems [2, 5, 32, 55, 97]. Researchers
following the principles of Fitts’ law [26] have attempted to decrease
the Index of Difficulty by enlarging targets [59, 60] or the cursor’s
interactive area [15, 31, 65, 93], formore efficient selection processes.
Others modify transfer functions for quicker cursor movement [3, 9,
93, 100] or introduce shortcuts during approach movements [1, 53].

Effective facilitation techniques require accurately predicting
users’ intended targets, however. The traditional procedure relies
on proximity-based heuristics [1, 31]. These often identify the clos-
est target as the one intended. A more complicated form is Bubble
Cursor [31], whose interactive area (bubble radius) varies dynami-
cally with the context Lu et al. [55] have expanded this concept for
3D selection tasks. In high-target-density interfaces, the proximity-
based “nearest neighbor” strategy inevitably proposes many wrong
targets, causing unwanted distractions [97]. This shortcoming led
to algorithmic attempts to improve motion end-point predictions
by relying on the observed fractions of trajectories [3]; e.g., Lank et
al. [48] predicted the pointing target by quadratic extrapolation of
the cursor velocity based on observation. However, the algorithms
often fall short of grasping the vast variability in human behavior.

Recent efforts have turned to neural networks. They process
multiple channels of information (cursor [8] and hand motions [18,
38, 49], gaze [39], etc.) for more accurate evaluation of intentions.
Recurrent neural networks [18, 95] have demonstrated effective
handling of sequential data for prediction of user intention, with
meta-learning techniques [64] further enhancing the model’s abil-
ity to make efficient personalized predictions. These human-data-
driven approaches all face a great obstacle, though, in the labor-
intensive data collection required, both initially and often in light of
new task conditions. We sought to address this challenge by using
simulation-based data to facilitate target selection.

1https://github.com/hsmoon121/3d-target-inference

2.2 Biomechanical Simulation of User Motion
Data-driven methods improve inference of human intentions by uti-
lizing extensive human-motion datasets that capture both intra-user
(differences in a single user’s motions) and inter-user (differences
across multiple users) variability. Our novel approach achieves pre-
cise inference by implementing realistic motion simulation that
has two following features: 1) utilizing a state-of-the-art human
biomechanical model [77] and physics engine [84] to guarantee
coherent bodily movements that honor human physical constraints
and 2) biomechanics-informed replication of human motion’s vari-
ability. To address intra-user variability, which arises partly from
motor noise during muscle/joint actuation [52, 58, 87], we modeled
motor control’s constant and signal-dependent noise both [78, 86],
sensitized to the latter’s recognized role in the speed/precision com-
promise inherent to motion [36]. Tackling inter-user variability
involves diverse limb-joint configurations, reward formulations,
and motor-noise levels.

One way to address a user’s goal-directed behavior with biome-
chanics is to frame it as an optimal-control problem [24]. Following
the assumption that users aim to minimize internal costs (e.g., jerk
of the end effector) when pursuing their goals, this optimization
utilizes feedback from visual perception, proprioception, and other
sensory channels. While classical closed-loop optimal-control tech-
niques, such as linear-quadratic-Gaussian (LQG) control and model
predictive control (MPC), have served simulation of human motion
in HCI [25, 46, 58, 74], the computation required at each timestep
for motion optimization renders their use with high-dimensionality
models impractical. This constraint has prompted a shift toward
deep reinforcement learning (RL). Through RL, the control policy
(which, given sensory input, selects optimal actions) is derived as a
deep neural network. Applying this paradigm in RL-driven biome-
chanical simulations dovetails with the emerging user-modeling
framework, computational rationality [17, 22, 43, 44, 69]. Such sim-
ulations have already proven effective in modeling mid-air point-
ing [16, 24], keyboard use [37], jumping [42], gait [51], and a suite
of interactive tasks [40] addressed by Ikkala et al. These founda-
tions supported our work to develop biomechanical simulation for
inferring user-intended targets via realistic motion data.

2.3 Probabilistic Inference with User Simulation
We also incorporate probabilistic inference to minimize risks of
inference errors by accurately estimating the probability distribu-
tion for relevant variables [103]. This facilitates intelligent target-
selection assistance; for instance, the system might offer shortcuts
only when its predictions pass a certain confidence threshold [97].
Especially in traditional settings, Bayesian inference commonly
serve such probabilistic reasoning [4, 30, 102, 103]. Informed by
prior factors such as use frequency, it link users’ actions to likely tar-
gets, such as intended buttons [96, 102] or words [28, 30]. However,
this approach is available in models only where the user actions
and targets can be easily paired through likelihood functions. One
common approach is to model the endpoints corresponding to indi-
vidual keys by using simple Gaussian distributions [4, 102]. Ziebart
et al. [103] exploited a simple linear relationship between 2D inter-
face states and user cursor actions to estimate a target’s posterior
distribution from partial cursor trajectory.

https://github.com/hsmoon121/3d-target-inference
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The complexity of today’s computational models for 3D point-
ing (e.g., arising from hierarchical structures with RL-based poli-
cies [16, 24, 40]) complicates applying traditional forms of prob-
abilistic inference. Against this backdrop, likelihood-free infer-
ence [19], which employs iterative simulations to identify the most
plausible parameter distribution that could account for the behav-
iors observed, represents a viable alternative. Conventional forms of
these methods, such as approximate Bayesian computation [6, 34],
are hampered by a need for substantial computation power and
time (often hours to days [45, 62]). Recently introduced amortized
inference techniques [19, 29, 75] appear more promising: Modern
machine-learning approaches enabled real-time variational approx-
imation of complex probability distributions. They used a neural
proxy model that effectively maps observed behaviors to an approx-
imate posterior distribution of the parameters. This approach has
already enhanced inference process with several HCI simulation
models [63], delivering inferences in tens of milliseconds. We ex-
tend it to real-time 3D target inference, addressing key challenges
such as real-time deployment, data discrepancy between simulation
and humans, and user variability.

3 SIMULATION-BASED TARGET INFERENCE
We formulate the target-inference problem as identification of the
posterior distribution of the user-intended target point by consid-
ering the ongoing trajectory of the end effector (in essence, to the
on-screen cursor/pointer). Our method is flexible and suited for
environments where pointing is done through human motion alone
or with devices like VR controllers. The key steps of our method
can be summarized thus:

(1) Biomechanical simulations: The first step constructs com-
putational agents that, bounded by human biomechanical
constraints, simulate realistic human motor behavior for the
intended interaction. Dynamically adjustable parameters for
several latent factors (such as limb length, the noise of motor
control, and kinematic constraints) account for intra- and
inter-user variability as the agent generates human-like mo-
tion toward various targets. The action policy, governing the
perceptual control of biomechanics in the interactive tasks
specified, is obtained through RL with the agents pursuing
maximal utility analogously to how humans do.

(2) Training the inference model with the simulated data:
At its core, our inference model is a deep neural network.
Trained with the simulated data of the computational agent,
it employs state-of-the-art density-estimation techniques to
approximate probabilistic inference, thereby expediting the
target-selection procedure.

(3) Deploying the inference model to the end users: Once
trained, the inference model can compute posterior distri-
butions of the predicted target position all in milliseconds.
These distributions specify not only themost likely target but
also a confidence level that can inform the system’s decision
on when to provide assistance.

3.1 Step 1: Biomechanical Simulations
We assume that humans’ target-selection behavior unfolds as a
sequence of decisions. At each timestep, the decision continually

refines the action in light of real-time sensory feedback (e.g., on
the distance between the target and the end effector). Our agent
emulates this complex dynamic through a computationally rational
agent’s decision-making [69]. Concretely, the agents perceive the
interactive environment through vision and proprioceptive feed-
back. Then, the action policy determines the action, which gets
translated into movement through biomechanical models (see Fig-
ure 2(a)). This can be formulated as an RL problemwithin a partially
observable Markov decision process, or POMDP.

Our focus in this paper is on human upper-limb interaction.
Humans’ upper extremities are typically characterized by seven
degrees of freedom: three in the shoulder (elevation plane, shoulder
elevation, and shoulder rotation), one in the elbow (elbow flex-
ion), and three in the wrist (forearm rotation, wrist flexion, and
wrist deviation). We chose an implementation of the Upper Ex-
tremity Dynamic Model [77], which recent research has exploited
extensively to simulate human interaction — with actuation either
directly at the joints [24, 37] or through the tendons [40]. In contrast
to conventional linked-segment models with their basic skeletal
framework, biomechanical models provide physiologically accurate
joint movements with inter-segmental coupling and empirically
derived angle and torque limits. For integration with RL, we employ
a biomechanical model converted for use with the computationally
efficient physics engine MuJoCo [40, 84].

Below, we present the RL problem formulation that captures the
agent’s target selection in an interactive task environment, then
introduce the settings that permit realistic motor variation.

3.1.1 RL formulation. Within the POMDP framework2, an agent
performs an action based on its current observation, which encom-
passes only partial information on the full task state. In consequence
of the action, the agent receives a reward, alongside a new obser-
vation, from the updated state. The following key components
characterize our setting:

• Observation: The agent’s observations of the task state come
from two primary types (inspired by prior work [40]): visual
and proprioceptive. A forward-facing eye 20 cm above the
agent’s neck captures visual feedback, as 180 × 120 RGB-D
images of the environment in front of it, and the proprio-
ceptive feedback encompasses information on each joint’s
rotational angle, angular velocity, and acceleration.

• Action: Our action space comprises: 1) seven action com-
mands of actuating corresponding joints and 2) a command
for click decision, both with ranges of -1 to 1. The action
commands for each joint directly determine the torque ap-
plied to each joint, scaled for the respective biomechanics
limits; this is inspired by the setting of Hetzel et al. [37],
which afforded more efficient training than muscle-based ac-
tuation. The click decision command triggers the simulated
user’s click after applying random time noise (as simplified
implementation of prior models of click timing [71]).

• Reward: Each target selection can have its own task-specific
reward formulation shaping the agent’s behavior strategy.
This reward structure’s weighting for the agent’s selection

2We refer the reader to Sutton and Barto [82] for the general formulation of POMDP
and RL problems.
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Figure 2: (a) Our biomechanical simulation involves the complete perception–action loop, from observing the simulated
environment to generating actions through a learned action policy. This simulation approach accounts for a set of latent factors
that (b) define the target-selection task and (c) yield various human motor variations.

success/failure, elapsed time, and motor effort ultimately in-
fluences tradeoffs (e.g., prioritizing successful selections over
speed or fatigue factors). From among the various means
of evaluating optimal motor effort, we opted for a well-
established and simple measure: jerk (change in acceleration)
at the end effector [27, 85].

3.1.2 Interactive task. An interaction mechanism on top of the
biomechanical model specifies how upper-limb movements trans-
late to end-effector movements. For instance, in VR, raycasting
techniques are commonly used to map the hand’s orientation to
a ray-style cursor. Meanwhile, transfer functions specific to indi-
rect pointing devices (mice, trackpads, etc.) mediate the cursor’s
on-screen position. Also crucial is addressing the target’s config-
uration with other onscreen elements, which entails specifying
target sizes and positions that match real-world use cases while
simultaneously considering distractors’ possible exacerbation of
task difficulty.

3.1.3 Latent factors for motor variability. Our model captures a
broad spectrum of latent factors that contribute to both intra- and
inter-user variation. Table 1 provides an exhaustive list of the com-
ponents our research covered.

• Intra-user variability:Within-individual variations arise from
two sources: motor noise and posture shifts. Wemodel motor

noise via both signal-dependent and constant components.
In our control system, the action, 𝒂, is influenced by noise
added to the agent’s decision 𝒂∗ thus:

𝒂 = min
(
max

(
𝒂∗ · (1 + 𝜖sig) + 𝜖con,−1

)
, 1
)
,

where 𝜖sig is the signal-dependent and 𝜖con the constant
noise term. It samples both from Gaussian distributions with
a mean of 0 and different standard deviations (0.103 and
0.185), following van Beer et al.’s example [86]. Several mech-
anisms account for natural postural deviations not included
in the biomechanical action space: in each trial, we randomly
sample 1) the eye position, for perturbations to eye–hand
separation caused by neck-tilting, and 2) torso tilt (while the
spine is kept fixed), for considering variations that might
arise from changes in body posture.

• Inter-user variability: A parameterized simulation model per-
mits simulating user-to-user physical differences and rep-
resenting user preferences. A parameter for limb scale gets
applied first, adjusting the overall kinematics relative to the
external environment; next, noise-scaling factors are added
for each joint (shoulder, elbow, and wrist), to capture its
motor-precision variations; and, finally, we adjust the penalty
for unsuccessful selections (a weight parameter for reward
formulation), to reflect the cautiousness behind each user’s
decision on clicking.
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Table 1: A list of the latent variables accounted for to address both intra- and inter-user motor variability.

Notation Meaning Type Distribution

𝜖sig Signal-dependent motor noise term Intra-user N(0, 0.1032)
𝜖con Constant motor noise term Intra-user N(0, 0.1852)
𝛿eye Deviation in eye position from the upright point (m) Intra-user U([−0.02, 0.02]3)
𝜙tor Angular deviation of the torso from vertical angle (◦) Intra-user U([−1, 1]3)
𝑠limb Global scaling coefficient for limb sizes Inter-user U([0.85, 1.10])
𝜎sho Coefficient for scaling the noise for shoulder joints Inter-user U([0.25, 1.25])
𝜎elb Coefficient for scaling the noise for the elbow joint Inter-user U([0.25, 1.25])
𝜎wri Coefficient for scaling the noise for wrist joints Inter-user U([0.25, 1.25])
𝑤fail Penalty coefficient for failed selections Inter-user U([0.1, 1.0])

3.1.4 Policy training. Weutilize proximal policy optimization (PPO)
[79] to optimize the neural-network-based action policy of the
agent. This deep RL algorithm is suitable for tasks with continu-
ous action spaces, contributing to its widespread use in human-
modeling research [40, 43]. Specifically, we engineer the policy
network to accept given user-specific free parameters (𝑠limb , 𝜎sho ,
𝜎elb , 𝜎wri ,𝑤fail ) along with the observation variables. By optimizing
the policy network across episodes featuring diverse user param-
eter values, we develop a generalized action policy for the agent
that accommodates a wide range of user attributes [47, 62, 63].

3.2 Step 2: Training of the Inference Network
We employ neural density estimation [21, 75] to obtain the posterior
distribution for the intended target position from observed user
trajectories (Figure 3). Recently published work [63] inspired us to
extend the method for efficiently inferring not just the free parame-
ters of simulation models (e.g., characteristics of the simulated user)
but also the exact positions of intended targets. This broadening
of focus is justified in that the target positions can be viewed as a
form of parameter, one representing the task environment in each
trial. Accordingly, the same density-estimation techniques can be
applied for our aim.

The core strength of our inference network lies in its ability to ex-
tract essential information from input data to accurately represent
complex probability distributions beyond simplistic assumptions
such as Gaussian models’. Here, the input data 𝒚 include not just
the trajectory of the end effector’s 3D position but also the size and
position details of interactive objects (potential targets) within the
task environment. The output is a posterior distribution 𝑝 (𝜽 |𝒚),
where 𝜽 represents the intended target position. To generate this
complex distribution computationally, our inference network em-
ploys normalizing flows [21, 70, 76]. Starting with a basic normal
distribution, it applies a series of bijective transformations, each
modeled by a neural network and conditioned on the input data 𝒚.
These steps progressively shape the distribution into more intricate
forms, approximating 𝑝 (𝜽 |𝒚). Additionally, an encoder network
can preprocess the input data before feed-in to the normalizing
flows. This encoder network can range from simple multi-layer per-
ceptrons to Transformers or other advanced architectures suited
to handling time series or multiple trials. Descriptions elsewhere
provide further implementation and training details [63].

Training the inference network relies on a simulated dataset com-
posed of pairs of target positions 𝜽 and corresponding synthetic
observations 𝒚. Factors such as the locations where targets spawn
and their frequency of being chosen for targeting can influence
this prior. For instance, user commands in menu-selection tasks
may show a bias toward specific items [23] while word and letter
frequency influence presses in keyboard interfaces [28]. These vari-
ations in the prior distribution inevitably affect the posterior that
the network learns, in line with Bayes’ theorem.

3.3 Step 3: Deployment for User Assistance
Once trained, our inference model generates posterior distributions
of the target positions in light of the given portion of the user’s tra-
jectory. The operation, conducted via a single forward pass through
the neural network, takes mere milliseconds. Importantly, this prob-
abilistic distribution provides more than the most probable target;
it also assigns a confidence value to the prediction. Consider an
interface populated with 𝑁 selectable objects, each at position 𝜽𝑖 ,
for 𝑖 = 1, . . . , 𝑁 . For a given observed input 𝒚𝑡 at timestep 𝑡 , the
most probable target 𝑖∗𝑡 is identified thus:

𝑖∗𝑡 = argmax𝑖 𝑝 (𝜽𝑖 |𝒚𝑡 )

The procedure for calculating the exact 𝑝 (𝜽𝑖 |𝒚𝑡 ) by means of the
normalizing flows is detailed in Supplement A. The confidence level
(𝐶𝑡 ) denotes the certainty ratio for the most likely target 𝑖∗𝑡 :

𝐶𝑡 =
𝑝 (𝜽𝑖∗𝑡 |𝒚𝑡 )∑𝑁
𝑖=1 𝑝 (𝜽𝑖 |𝒚𝑡 )

Accordingly, 𝐶𝑡 equips us with a probabilistic metric for the trust
we can place in the model’s prediction at the moment in question.
As Figure 3(b) illustrates, the confidence level rises over time as the
inferred posterior distribution narrows its focus to the correct target.
With our inference approach, the related information is accessible
at each timestep with minimal lag (∼10 ms). This permits ready
integration of the confidence measurement into existing systems,
enhancing target selection processes in real time [53, 97].

4 OVERVIEW OF STUDIES
Our method is composed of three key steps. To fully validate our
approach, our evaluation is also comprised of three distinct studies,
each corresponding to one step in the method. Our evaluation of
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Figure 3: (a) Our inference network derives the posterior distribution of the target position from observed user motion. (b)
With the inferred posterior, the system not only identifies the most probable target but also provides a confidence level for that
target, in real time (5–10 ms). The above posteriors are based on a human participant trajectory collected in Study 1.

validity focused on raycasting-based pointing, which is a represen-
tative and ubiquitous target selection method that can be found in
a wide range of VR/AR applications. Together, these efforts cover
the full implementation and validation process, from building the
biomechanical simulator to training and deploying our inference
network in end-user target-selection scenarios.

• Study 1 (Evaluating the simulator): We verified how
well the simulated motion replicates the motions of human
users.We first developed a simulator for the raycasting-based
target-selection task, which allows us to gather simulated
motion data. Then, we gathered human participants’ motion
data for the same selection task. Finally, we compared data
from two sources.

• Study 2 (Evaluating the inference): Next, after training
the inference network on the simulated dataset, we evalu-
ated the accuracy and efficiency of the inference network in
inferring the target from human participants’ motion data.

• Study 3 (Evaluating the enabled assistance): We de-
ployed the trained inference network and utilized its in-
ference to assist target selection. Our method was designed
to offer selective suggestions, displaying the inferred results
only when the inference was deemed reliable. We evaluated
how this approach improved the human users’ speed and
accuracy in selecting targets.

4.1 Task: Raycasting Selection
Raycasting has become established as a standard technique for
interacting with objects in VR [2, 5, 55, 61, 92]. It employs a cursor
that resembles a stare emanating from a controller, whereby users
can engage with distant objects. For simplicity, our task setting
assumed that all interactive objects are positioned on a spherical
surface, consistently at five meters from the user’s eye level. This
setup mirrors a typical VR scenario in which interface elements
are arranged on a single plane, for minimal occlusion. Accordingly,
the position of the end effector here is determined by the point at
which the ray and the surface intersect. The user’s objective is to
trigger a click when the end effector is within the target area.

4.1.1 Task configuration and procedure. We implemented a target-
selection task described by Lu et al. [55]. This task comprises a grid
containing spherical objects where one (colored blue) is designated
as the target while the others (colored white) serve as distractors.
We set two distinct grid configurations (Dense andWide) and two
target sizes (Large and Small). As Figure 5 shows, the Dense config-
uration represents a scenario with densely arranged objects, with
a 7 × 7 grid whose spacing between objects is a visual angle of
1.44◦, and theWide configuration disperses the objects across the
user’s entire field of view, with a 9 × 7 grid that has 6◦ spacing.
Target size is either Large (width: 0.10 m, visual size: 1.15◦) or Small
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Figure 4: Overview of studies: (a)We developed a simulator to
replicate user behavior during VR target selection tasks, and
trained an inference network using the simulated dataset. (b)
We then gathered motion data from participants perform-
ing the same task using the Meta Quest 2 device. This data
was used to evaluate both our simulator (Study 1) and the
inference network (Study 2). Finally, we tested our inference-
based assistance in target selection scenarios with human
users (Study 3).

(width: 0.06 m, visual size: 0.69◦). To modulate selection difficulty
target-specifically, we established a consistent beginning point by
means of a starting object. In this setting, users initiate a trial by
directing the end effector through the starting object, after which
the selection target — the target that the participant should select —
is indicated (in blue, as opposed to white) on the grid. The starting
object is positioned either below 13.5◦ from the grid center for the
Dense type or at the center for the Wide type. The width of the
starting object is 0.10 m (1.15◦). We followed the principles estab-
lished by Lu et al. [55], whereby each selection target must have
four adjacent distractors. Since a target in the outermost layer or
adjacent to the starting object is not surrounded by four distractors,
it is not chosen as a selection target. This left 25 potential targets
for Dense and 26 for Wide. For each trial, we sampled the target
uniformly from the candidate targets.

4.1.2 Transfer to simulation. We implemented the identical target
selection task environment in MuJoCo for simulation. Our simu-
lated agent has a 3D model with a VR controller (Meta Quest 2)
attached to its right hand, which serves as the origin of the ray
projection. Hence, the upper-limb movements dictate the ray’s di-
rection and origin, thereby determining end-effector position. We
set the decision-making interval to 50 ms. We defined the reward
formulation for the task such that the simulated agent receives a
reward signal at each timestep 𝑡 , denoted as 𝑟𝑡 , as follows:

𝑟𝑡 =


𝑤success −𝑤effort · ∥𝒋𝑡 ∥2, if click is successful
−𝑤fail −𝑤effort · ∥𝒋𝑡 ∥2, if click is failed
−𝑤time −𝑤effort · ∥𝒋𝑡 ∥2, otherwise

The reward coefficients, 𝑤success , 𝑤fail , 𝑤time , and 𝑤effort , corre-
spond to the success, failure, elapsed-time, and motor-effort com-
ponents, and 𝒋𝑡 represents the timestep-specific jerk of the end ef-
fector, expressed in m/s3. We chose the fixed settings𝑤success = 10,
𝑤time = 0.05, and 𝑤effort = 0.0025, while 𝑤fail is varied in line
with sampled values as presented in Table 1. This reward formu-
lation ultimately determines the simulated agent’s strategy after
convergence.

Figure 5: Four target configurations factored by grid configu-
ration (Dense or Wide) and target size (Large or Small).

5 STUDY 1: EVALUATING USER SIMULATOR
A foundation of our target-inference method is the biomechanical
simulation’s capacity to replicate human users’ motions faithfully
under varying levels of selection difficulty. Study 1 validated this
capacity through comparisons between the simulator-generated
motions and human ones. We gathered data from participants per-
forming the raycasting-based target-selection task. The task incor-
porated variations in target configuration (Dense and Wide) and
sizes (Large and Small). Our simulator was achieved through RL
(PPO [79]) in MuJoCo simulation, adhering to its formulation in
Subsection 4.1. To expedite the learning process, we trained two
distinct simulators for both the Dense and the Wide target configu-
ration. The training took approximately 40 hours on a PC equipped
with an Intel i9-13900K CPU and NVIDIA RTX 4090 GPU. See
Supplement B for details.

5.1 Data Collection Method
5.1.1 Participants. Twenty participants were recruited (11 women
and 9 men). Their age range is 21–45 (mean=26.2, SD=5.1). All
participants had either normal or corrected-to-normal vision and
were right-handed.

5.1.2 Task. The task and interface configuration were as presented
in Section 4.1. Participants were instructed to select a specific tar-
get from among distractor objects in the VR environment (see
Figure 4(b)). They had to point their ray at a fixed starting object,
which activated a trial. Of the white objects in the grid, one object
(the selection target) turned blue at the moment the trial began.
When the end effector hovered over an object, that object turned
light blue if it was the correct target and turned light green oth-
erwise. A successful selection was accompanied by a tone, while
an unsuccessful selection was indicated by a beep sound distinct
from this. Each trial persisted until a successful selection was made.
Participants were instructed to complete each trial “as quickly and
accurately as possible.”
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Table 2: Study 1: Comparison of human and simulated task performance across conditions. Our simulation’s mean performance,
by every metric and under all target conditions, fell within one standard deviation (SD) of the mean performance of each
participant across the full set of human participants. These results are therefore highlighted in green.

Metric
Target Condition Mean of

Human Data
SD of

Human Data
Mean of

Simulated DataConfiguration Size

Completion time
(second)

Dense Large 1.174 0.202 1.357
Dense Small 1.634 0.390 1.751
Wide Large 1.411 0.311 1.551
Wide Small 1.931 0.370 2.096

Error rate

Dense Large 0.140 0.113 0.158
Dense Small 0.238 0.126 0.262
Wide Large 0.203 0.134 0.174
Wide Small 0.307 0.148 0.403

Figure 6: Study 1: Our simulator’s generated motion followed
Fitts’ law, closely mirroring the human participants’ motion

5.1.3 Study design and procedure. The study employed a within-
subject design with a 2 × 2 factorial structure: Target Configuration
(Dense and Wide) × Target Size (Large and Small). We refer to each
combination of Target Configuration and Target Size as a condition.
Different conditions come with different levels of difficulty in the
target selection.

All participants first signed the consent forms. Participants com-
pleted a practice block for each condition before the data collection,
to familiarize themselves with all task conditions. Then, they went
through eight sessions in the study proper, with two sessions per
condition. The sequence of conditions was counterbalanced via
a balanced Latin square design [12] to mitigate the influence of
order effects and immediate carry-over effects. Each session com-
prised five blocks, and each block presented the participant with
all possible selection targets in the trials (25 trials for Dense, 26
trials forWide), appearing in a randomized order. Calibration was
done before each block: the system measured the participant’s eye
level and then displayed the target grid at that height, to guaran-
tee consistent positioning of the targets. Upon completion of each
block, participants’ fatigue levels were assessed on the Borg CR10
scale [11], a 10-point rating scale designed to quantify perceived

human fatigue. Participants reporting fatigue levels of 6 or above
were promptly granted breaks of at least three minutes to minimize
the potential impact of fatigue. Also, participants were free to take
additional rest breaks whenever needed. In all, each participant
completed 1,020 trials (2 × 2 × 2 × 5 × (25 or 26)), with the full
experiment lasting approximately an hour. The study adhered to
the local protocols for ethics approval.

5.1.4 Apparatus and implementation details. Participants performed
the task with a Meta Quest 2 at a 120 Hz refresh rate. The study soft-
ware was implemented in Unity. Within the program, we tracked
the trajectory of the end effector and recorded the execution of
clicks for each trial at 50 ms intervals.

5.2 Results and Discussion
Aggregated task performance. Our simulator reached levels of task
performance similar to humans’ under varying conditions and dif-
fering levels of selection difficulty. In the four conditions, we gen-
erated a set number of trial data from our simulator and compared
with human data, using two aggregated performance metrics: com-
pletion time and error rate. Completion time was measured from
the moment a trial was initiated (i.e., the ray passing through the
starting object) to the moment when a successful click occurred.
The error rate was calculated as the ratio of the total number of
unsuccessful clicks to the total click counts. Human participants
exhibited longer completion times and higher error rates for more
difficult selections; i.e.,Wide configurations and Small targets in-
troduced higher difficulty. This result is in line with Fitts’ law (see
Table 2 for the results). Using our simulator, we faithfully repro-
duced these dynamics. Simulated performance closely matched the
mean performance of participants in each condition, falling within
one standard deviation of mean performance across all participants.

Our simulator consistently adhered to Fitts’ law, faithfully re-
producing the patterns observed in human participants’ perfor-
mance, even at a finer-grained level (see Figure 6). We binned all
of the simulator’s trials into 12 groups on the basis of the Index
of Difficulty associated with each selection target’s position (with
equal-frequency binning). The analysis revealed a positive linear
correlation between the completion time and the Index of Difficulty
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Velocity Profile across Users(a)

(b) Velocity Profile across Blocks
(Median user case)

Figure 7: Study 1: Our simulator faithfully replicates the in-
tricate details found in motion trajectories, as evidenced by
velocity–time functions. We normalized all movement times
to a [0, 1] range for easier comparison, with 0 marking the
start and 1 the end of a movement. (a) The simulation closely
matched the average velocity profile of individual partici-
pants. (b) With fixed user-specific parameters, the simulator
accurately reproduced the variability in the velocity profile
across an individual participant’s blocks. The plot is from
the participant with the median peak velocity across all par-
ticipants.

for each simulated point (𝑅2=0.62). This result is consistent with
prior work [24, 40], which has demonstrated adherence to Fitts’
law in biomechanical simulations of human pointing motion.

Velocity profile. The velocity–time functions summarize how the
motion dynamics of users unfold over a trial [22, 66]. Figure 7(a)
shows that our simulated trajectories replicate the overall velocity
profile of human movements. Specifically, human and simulated
users closely resemble each other in the magnitude of peak velocity
and the normalized time at which this peak velocity was reached.
Our simulator recorded a peak velocity of 0.179m/s2 at a normalized
time of 0.252, on average. Both the magnitude and the time fall
within standard-deviation range of the human data; the figures are
0.204 ± 0.035 and 0.254 ± 0.008, respectively.

Variability in velocity profiles is visible in the human data, both
across users and within trials for a single user. Our simulator cap-
tures this complexity by sampling the latent variables listed in
Table 1 for each individual trial (inter-user) or user (intra-user). For

intra-user variation, the simulator closely mimics fluctuations ob-
served from individual human users from one trial block to another.
Specifically, the SD values for peak velocity and its occurrence
time were 0.018 and 0.025, falling within the human-data range, at
0.025 ± 0.009 and 0.028 ± 0.010, respectively. Figure 7(b) showcases
how our simulator replicated the intra-user variability of one par-
ticipant, the one with the median peak velocity from among the
20 participants. As for inter-user variation, the simulator yielded
SDs 0.005 and 0.008 for peak velocity and its timing, respectively, in
contrast against the human data’s values of 0.035 and 0.021. We dis-
cuss the factors that may have contributed to the higher inter-user
variability observed in the human data in Section 8.

6 STUDY 2: EVALUATION OF THE INFERENCE
MODEL

In the second study, we assessed the performance of our inference
network, which was trained exclusively on simulated data from
Study 1. Our inference model predicts the intended target by using
any fraction of the trajectory and states a probabilistic confidence
level for each prediction. With primary focus on investigating the
accuracy and efficiency of the inference network as the trajectory
progresses, we compared our inference model to three other ap-
proaches, including data-free and data-driven methods both. The
baseline method that has the most potential to yield the best ac-
curacy uses the same neural-network structure for inference but
with training on human motion data, collected in Study 1. With this
study, we also aimed to highlight the advantages of using simulated
data over human data.

6.1 Experiment Method
6.1.1 Evaluation data. We evaluated inference performance utiliz-
ing the human-participant data from Study 1 (𝑁=20). With each
trajectory recorded at intervals of 50 ms, we extracted fractions
from each trajectory at cumulative progression intervals, starting
from 0–10%, and extending by 10% increments up to 100%.

6.1.2 Inference methods. We implemented four inference methods
for the study, with our approach among them:

• Nearest Neighbor: Inspired by Bubble Cursor [31, 55], this
method simply considers the object closest to the current
end-effector position as the inference result.

• Quadratic Regression [48]: We adapted a method from Lank
et al. Lank et al. [48] that predicts a trajectory’s endpoint
through quadratic extrapolation of the end-effector velocity.
This approach does not offer probabilistic inference. For this
study, we conducted 5-fold cross-validation, meaning that
16 of the 20 users were used for training data, while the
remaining four were used for testing, and this process was
repeated five times.

• Human-data-based Neural Inference: We trained a baseline in-
ference model, which applied the model structure employed
in Simulation-based Neural Inference, using human data. This
baseline represents the upper limit for our simulation-based
approach’s potential, as it captures human variability from
authentic motion data. This approach enables probabilistic
inference and offers a predicted confidence level for each
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(a)

(b)

Figure 8: Study 2: (a) Mean accuracy of intended-target clas-
sification, by inference method, as the proportion of the
trajectory observed rises. (b) The neural inference methods
provide internal confidence levels along with the inference.

inference. See Supplement C.1 for further details. As with
Quadratic Regression, we used 5-fold cross-validation.

• Simulation-based Neural Inference (our approach): We trained
an inference network based on the simulator constructed
in Study 1. Similarly to Human-data-based Inference, this
this method generates predicted targets and associated con-
fidence levels. During the training, we sampled user-specific
parameters (Table 1) for each trial and collected data accord-
ingly. The entire simulation comprised approximately 65,000
trials, which took about two hours using the same PC as in
Study 1. See Supplement C.2 for more details.

6.2 Results and Discussion
Inference accuracy. Figure 8(a) shows the accuracy of each inference
method. Following the practice established by prior works [18, 103],
we analyzed different method’s accuracy at varying proportions of
the observed trajectory from the onset, ranging from 10% to 100%.
This allows for the assessment of comprehensive inference accuracy
across trials with different durations due to varying target locations.
Human-data-based Neural Inference consistently performed better

than other methods; however, its advantage over Simulation-based
and Nearest-Neighbor methods gradually became marginal as the
end of a trajectory approached. Our Simulation-based Neural In-
ference, though slightly behind the Human-data-based approach,
outperformed the Quadratic Regression method. Our method and
the Nearest-Neighbor method showed overall comparable perfor-
mance, with ours performing slightly better in the earlier stages
and Nearest Neighbor doing slightly better in the final stage. Fi-
nally, Quadratic Regression consistently trailed behind the other
methods; this is consistent with the literature, which has reported
that it shows unstable performance [103].

Despite having similar accuracy to the Nearest-Neighbormethod,
Simulation-based Neural Inference offers the significant benefit of
leveraging inference confidence. This approach enhances the sys-
tem’s ability to determine the optimal timing for using inferred
results, leading to more effective assistance and reducing distrac-
tions from premature visualizations of targets [97]. Figure 8(b) illus-
trates the increasing confidence of two Neural-Inferencemethods as
movements progress. Unlike these methods, the Nearest-Neighbor
approach lacks a mechanism for accurately timing assistance.

Inference efficiency. Our method’s neural inference demonstrated
an average inference time of 5–10 milliseconds. Although this is
slightly longer than the processing times of Nearest Neighbor or
Quadratic Regression, which took less than one millisecond, our
inference method still offers a remarkably high computation speed.
This level of efficiency allows it to function in real-time scenarios,
even with visual refresh rates of 120 Hz.

The training data needed in human-data-based inference. Simulated
data can be generated infinitely from a trained simulator while
humans’ variability is captured via adjustment of user-specific pa-
rameters. In contrast, gathering data from humans comes with
a cost proportional to the quantity of data. This makes human-
data-based inference difficult to scale up. Here, we investigated the
effects of training a given inference model with various quantities of
human user data (see Figure 9). This highlighted the negative conse-
quences when the body of training data is not large or variety-rich
enough. Human-data-based Neural Inference exhibited a significant
decline in performance as the number of training users or trials per
user decreased: when limited to seven users or when there were
fewer than 40 trials per user, it was less accurate than Simulation-
based Neural Inference. This result highlights the cost that each
new target-selection task brings in human-data-based inference,
thereby establishing clear limits on transferrability due to the costs
of data collection. Furthermore, predicting the “sufficient” num-
ber of users for reliable inference is challenging due to inherent
uncertainties. Our method mitigates these challenges by offering
scalability through the use of simulation-generated data.

7 STUDY 3: REAL-TIME USER ASSISTANCE
Study 3 aims to demonstrate the efficiency and effectiveness of our
inference method in assisting users with target selection tasks. This
study implements a real-time interaction technique on aMeta Quest
2 device, comprising two key components: inference and assistance.
The interaction operates by inferring the most likely target during
a user’s selection process at every timestep and assisting user to
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Figure 9: Study 2: The performance of human-data-based
neural inferencewith various numbers of training users (left)
and training trials per user (right). The plots highlight the
dependency of themethod’s performance on data availability,
suggesting limited scalability. Shading denotes the standard
deviation across five validation user sets.

make more efficient selections by utilizing the inferred results. We
built a visual-suggestion-based assistance wherein the user can
visually check the inferred target and decide whether to select it.

Previouswork has demonstrated that while predictive and heuris-
tic techniques are highly accurate in less dense arrays, their effec-
tiveness decreases in denser configurations [33, 55, 65]. To fully val-
idate the performance of our simulation-based inference approach
in a wide spectrum of tasks, this study compares our approach
against various baseline techniques in two layouts:Wide and Dense
(refer to Figure 5). We first assess how our approach enhances
user assistance in theWide layout, a setting representative of con-
ventional scenarios where targets are adequately separated (Study
3A). Then, we shift our focus to the Dense layout, representing
more challenging environments where traditional methods tend to
struggle (Study 3B).

This study further investigates design options available for ef-
fectively incorporating the confidence levels into interaction tech-
niques. To illustrate, in Section 7.2.3, we additionally present a new
assistance technique, where an auto-click function is integrated
into the visual suggestion. This feature allows the system to au-
tonomously make decisions based on confidence levels of inference.
We evaluated its impact on user performance improvements.

7.1 Study 3A: Wide Layout Targets
We first assessed our assistance performance in theWide type of
target layout. We implemented visual-suggestion-based assistance
interaction wherein the inferred targets are shown to participants
to support efficient selection. The system proactively provides vi-
sual suggestions with a sticky ray [81, 91], where the ray starts
off in a straight line from the controller’s current orientation and
gradually curves at the end towards the inferred target. The in-
ferred target is highlighted as if it were hovered over: in light blue
if correct and light green otherwise. The selected target was the one
inferred at the time when the participant triggered the selection.
Unlike non-probabilistic inference methods (e.g., Nearest Neigh-
bor), our probabilistic approach permits choosing to trigger visual
suggestions only when the confidence value reaches a certain level,
thereby avoiding distractions caused by unreliable suggestions.

7.1.1 Participants. We recruited 12 new participants (3 women
and 9 men), ensuring none had previously participated in our Study
1. Their ages ranged from 19 to 29 (mean=24.75, SD=2.71). All
participants had either normal or corrected-to-normal vision and
were right-handed.

7.1.2 Inference methods. Since the Quadratic Regression method
showed poorer overall inference performance than the other infer-
ence methods probed in Study 2, we excluded it from this study.
Accordingly, our setup involved the other inference methods consid-
ered thus far: Nearest Neighbor, Human-data-based Neural Inference,
and Simulation-based Neural Inference (i.e., our method). For a sim-
ple baseline, we added the basic target-selection scenario without
inference, denoted as None. The system with Neural Inference gave
the user visual suggestions only if the confidence values exceeded
50%. The study’s non-probabilistic inference methods kept the sug-
gestion active throughout the trials.

7.1.3 Experiment design and procedure. The study employed a
within-subject design, featuring a 4 × 2 factorial structure: four
Inference Types (None, Nearest Neighbor, Human-data-based Neural
Inference, and Simulation-based Neural Inference) and two Target
Sizes (Large and Small).

The task details were consistent with Study 1’s, except for the
addition of the assistance interaction. All participants signed con-
sent forms. At the beginning of the experiment, participants were
given a practice block reflecting each condition (Inference Type
× Target Size). They were asked to perform trials as quickly and
accurately as possible. They went through eight sessions, each with
a distinct condition, in a counterbalanced order using a balanced
Latin square [12]. Each session was arranged into three blocks. As
in Study 1, participants calibrated their eye height, reported their
fatigue levels, and were provided with breaks as desired after each
block. Each participant completed 624 trials (4 × 2 × 3 × 26), in
approximately 30 minutes. The study adhered to the local ethical
protocols for approval.

7.1.4 Apparatus and implementation details. The interaction was
performed on a Quest 2 device. For the neural-inference meth-
ods, we converted the pre-trained network models, initially imple-
mented in PyTorch, to Open Neural Network Exchange, or ONNX,
format. This allowed us to run them on Unity’s Barracuda engine.
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Figure 10: Study 3: Our simulation-based inference approach
significantly improved the speed and accuracy of users’ target
selection over the naive selection across two distinct target
layout scenarios. No significant difference in performance
was found between our assistance and human-data-based
inference. An asterisk (*) indicates the statistically significant
difference with 𝑝 < 0.05 after adjustments using Bonferroni
correction. Error bars denote 95% confidence intervals.

The experiment program was executed on a desktop PC equipped
with an NVIDIA RTX 3080 GPU, wired to the VR device. This setup
enabled the neural-inference network to operate in real time, with a
latency of 5–10ms per inference. User trajectory data were collected
and used for inference at 50-ms intervals.

7.1.5 Results. We analyzed participants’ task performance using a
two-way (Inference Type× Target Size) repeated-measures ANOVA
with Greenhouse—Geisser correction. The absence of significant
effects of the block on both performance metrics (𝑝>0.05) suggests
that the learning effect was effectively minimized by the practice
session, allowing us to use data from all blocks in the analysis. The
ANOVA results showed a statistically significant effect of Inference
Type: 𝐹3,33=206.64, 𝑝<0.001 for completion time and 𝐹3,33=132.94,
𝑝<0.001 for error rate. Post-hoc tests with Bonferroni correction
showed significant differences between Inference Types (see Fig-
ure 10). All three inference methods led to significantly better task

performance than the None condition in terms of both completion
time and error rate (all 𝑝<0.001). There were no other significant dif-
ferences between Inference Types. We report the details of further
analysis with Target Size in Supplement D.1.

Overall, with large effective target sizes — in wide layouts where
targets are sufficiently separated — all inference methods signifi-
cantly enhanced user performance compared to naive selection. The
error rate of the assisted target selections was less than 6% on aver-
age. Considering that participants were instructed to prioritize both
speed and accuracy, it is plausible to expect even higher accuracy
in scenarios where speed is less prioritized, as indicated in previous
studies [99, 101]. Our method, based on simulated data, demon-
strated performance comparable to inference methods trained on
actual human data. As shown in previous work [55], the nearest
neighbor approach exhibited a high level of assistance performance
for targets with high effective size.

7.2 Study 3B: Dense Layout Targets
The visual-suggestion assistance with our inference method was
evaluated with the Dense layout of targets, more challenging for
target inference. We maintained consistency across task imple-
mentation, experiment design, and procedure, aligning them with
Study 3A, except for the change of the target layout. Following
the evaluation of visual-suggestion assistance, this study explores
an alternative selection technique based on our inference outputs.
We specifically examined auto-click features, offering a more ac-
tive system engagement compared to the passive nature of visual-
suggestion assistance.

7.2.1 Participants. Twenty new participants (13 women and 7 men;
ages ranged from 18 to 37; mean=25.6, SD=4.1) were recruited. All
had normal or corrected-to-normal vision, were right-handed, and
had not participated in our previous studies.

7.2.2 Results. A two-way (Inference Type × Target Size) repeated-
measures ANOVA with Greenhouse–Geisser correction revealed
a significant effect of Inference Type on both completion time
(𝐹3,57=82.31, 𝑝<0.001) and error rate (𝐹3,57=154.20, 𝑝<0.001). Post-
hoc tests with Bonferroni correction identified significant differ-
ences among the inference methods (see Figure 10). Consistent
with Study 3A, all inference methods significantly improved task
performance compared to the None condition, in terms of both
completion time and error rate (all 𝑝<0.001).

The key distinction from Study 3A was that both Human-data-
based and Simulation-based Neural Inference methods exhibited
lower error rates than Nearest Neighbor (𝑝=0.012 when compared
to Human-data-based; 𝑝<0.001 for Simulation-based Inference). No
other significant differences were found between the inference
types. These results indicate that marginal differences in infer-
ence accuracy didn’t significantly impact assistance performance.
Our simulation-based inference outperformed the nearest-neighbor
method in error rates, despite comparable levels of inference accu-
racy. Additionally, it matched the performance of human-data-based
inference, despite slightly lower inference accuracy.

7.2.3 Exploring the utility of confidence levels with auto-click. Infer-
ence confidence levels offer various options for designing assistance
interactions, ranging from passive to active system involvement.
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Figure 11: Study 3: Both neural inference methods (human-
data-based and simulation-based) improved completion
times with confidence-based automated-click assistance,
maintaining similar levels of accuracy. An asterisk (*) de-
notes 𝑝 < 0.05. Error bars denote 95% confidence intervals.

The visual suggestion represents passive usage, where the system
proposes actions but the user retains decision-making control. In
contrast, for clear user intents like text entry on a keyboard UI,
the system can autonomously process inputs to enhance efficiency.
Dwell-click [35, 56, 80] is a common example where the system
identifies user intention and clicks based on the user’s pointing
duration. While dwell-click is prone to unintended activations [41],
inference confidence can offer a more reliability for activation. A
balance between passive and active engagement is also possible, for
instance, by dynamically adjusting the dwell-click threshold using
inference confidence [68].

As a demonstrative example, we tested an active assistance inter-
action: auto-click. Here, participants controlled a ray upon the same
visual suggestions, but the system directly selected the inferred
target when certain criteria were met. This auto-click feature was
applied to all three inference methods. For neural-inference meth-
ods, the inferred target was auto-selected if confidence exceeded
90%. For Nearest Neighbor, we used a time-based criterion, auto-
selecting the target if the inferred target remained unchanged for
over 300 ms.3

Auto-click’s performance was evaluated with the same twenty
participants, following the same procedure. Significant effects were
observed in task completion time (𝐹1,19=24.28, 𝑝<0.001) and er-
ror rate (𝐹1,19=41.69, 𝑝<0.001) with the auto-click feature.4 The
confidence-based auto-click significantly enhanced completion time
for neural-inference methods (all 𝑝<0.001) without significant error
rate differences (see Figure 11).5 Nearest Neighbor’s time-based
auto-click led to a significantly better error rate (𝑝<0.001) with-
out affecting completion time (see Supplement D.2). The results
support using confidence levels as criteria for auto-click. A key
benefit of using confidence levels is their consistency. Unlike dwell-
click thresholds that vary widely from 300 ms to 2 s depending on
the input method [67], inference confidence offers a more stable
threshold directly linked to the inference quality.

3The value was as in prior work of dwell-click with hand-held pointing devices [10, 72].
4A two-way (With-or-without Auto-Click × Inference Type) repeated-measures ANOVA
with Greenhouse–Geisser correction was conducted.
5Post-hoc pairwise tests with Bonferroni correction was conducted.

Nearest
Neighbor

Neural
Inference
(Ours)

Visually adjusted ray Target to selectTrue ray 

Wrong suggestionWrong suggestion

No suggestion
(Con�dence = 15%)

No suggestion
(Con�dence = 48%)

Correct suggestion
(Con�dence = 94%)

Correct suggestion

Figure 12: Our neural inference approach enables the system
to selectively offer visual suggestions to the user based on in-
ternally measured inference confidence. In contrast, existing
heuristic assistance methods like nearest neighbor continu-
ously offer visual suggestions, often leading to suggestions
towards incorrect targets, thus hindering user performance.
The orange contour, overlaying the target array, represents
the system’s internally measured inferred posterior, which
is not visible to the actual participants.

7.3 Discussion
Contributing factors to superior assistance performance. The key
advantage of the neural inference methods over the nearest neigh-
bor approach was selective activation of visual suggestions based on
inference confidence (see Figure 12). The neural inference methods
activated visual suggestion for only 43% of the duration, with an
81% accuracy in targeting the user’s intended target. In contrast,
the nearest neighbor method was accurate only 35% of the time.
This selective feature was effective in reducing visual clutter and
reducing users’ clicks on less certain locations, especially in denser
target configurations.

We analyzed the impact of each inference method on partici-
pants’ cursor movements by measuring the number of submove-
ments6 and total travel distance. With assistance from the three
methods, participants showed fewer submovements (2.93 ± 0.36)
and shorter travel distances (3.03±0.19m) compared to naive selec-
tion (4.03±0.74 submovements, 3.19±0.23m). However, there were
no significant differences between the three methods, suggesting
that the neural inference’s selective visual suggestions mainly af-
fected decision-making regarding click timing, rather than affecting
cursor movement patterns.

Inference accuracy with users assisted. Having noted that the assis-
tance influenced cursor movements, we examined its effect on the
6Following a previous practice [50], we identified each submovement’s onset by lo-
cating the local minima in cursor speed, following smoothing with a Gaussian filter
(𝜎 = 3).
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Figure 13: Study 3: Mean accuracy and confidence in target
inference during user-assisted target selection with each in-
ference method.

inference accuracy of each method. We evaluated each method’s
inference accuracy using trajectory data from trials with partic-
ipants assisted by corresponding inference (Figure 13). Compar-
ing with Study 2’s results (Figure 8), which used naive selection
trajectory data, we noted a consistent trend: Our method lagged
behind human-data-based inference around the midpoint of the
trajectory but narrowed the gap towards the trajectory’s end, and
ultimately showed comparable accuracy to the nearest-neighbor
method. There was a general decline in inference accuracy com-
pared to Study 2, because assistance reduced the time the cursor
spent near the target, where inference accuracy is typically higher.

8 DISCUSSION AND CONCLUSION
This work introduces a novel simulation-based target inference
method, leveraging biomechanical simulation. The three studies
we conducted shed light on ways of applying this idea in HCI. We
can sum up their findings as follows:

• In Study 1, our simulator replicated human performancemea-
surements with high fidelity, falling within a one-standard-
deviation range across various levels of task difficulty while
also capturing motion variability.

• In Study 2, our inference model, trained exclusively on sim-
ulated data, achieved accuracy similar to the human-data-
based approach’s, with a short inference time: ∼5 ms. The
model usefully supplies a confidence level for its predictions.

• Study 2 showed also that data from at least seven participants
were needed for exceeding the accuracy of our simulation-
based inference model in our evaluation setting.

• In Study 3, a selection technique implemented using our in-
ferencemethod significantly improved speed and accuracy of
users’ target selection over naive selection, leading to fewer
cursor submovements. Furthermore, the selective assistance
using measured inference confidence led to higher accuracy
in densely arranged target selection scenarios compared to
pre-existing heuristics-based assistance.

Below, we discuss the implications of our findings and explore
opportunities for further extensions.

Biomechanics as a human-motion prior. Our results illuminate the
significant utility of human biomechanics as an essential prior in
the study of humans’ interactive motion. Traditionally, understand-
ing such movements required resource-intensive data collection
or heuristic programming, which may lack realism. We utilized
our prior knowledge of biomechanical movement (limb kinematics,
motor noise, and natural posture deviation) to generate realistic mo-
tion with variability. Study 1 showed that this approach faithfully
captures motor variability, and Studies 2 and 3 provided evidence of
the performance of the inference model trained with such simula-
tion. This work showcases the potential of the biomechanics model
as a powerful tool for replicating, analyzing, and understanding
human motion.

Utility of inference confidence. In Study 3, we demonstrated that
confidence levels from probabilistic inference function well as op-
erational indicators within the system to prompt assistance. One
factor contributing to our approach’s enhanced end-user perfor-
mance compared to the nearest-neighbor condition could be our
selective suggestion of inferred targets, enabled by confidence lev-
els. Also, confidence-driven auto-clicking further improved users’
target-selection performance. These results suggest our probabilis-
tic method effectively filters out unreliable inferences, a feat impos-
sible with non-probabilistic methods. While we used a simplistic
fixed threshold for confidence, future work should explore opti-
mization techniques [54] or RL [97] for intelligently identifying
optimal confidence thresholds or for adjusting to the desired bal-
ance between speed and accuracy.

Intra- and inter-user variability. Our simulation faithfully repro-
duces the intra-user variability. However, we observed that human
participants exhibited greater inter-user variability than the sim-
ulator, which may be attributed to factors not captured by our
current user parameters. For instance, humans’ internal reward
functions can vary significantly. Also, users also complete selec-
tion with varying levels of attention, experience various levels of
fatigue, and undergo unique learning processes, all contributing to
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inter-user variability. Further research is needed to capture these
inter-user-level differences in motion generation. Although the
greater inter-user variability in human data leads to slightly better
inference accuracy, this difference does not necessarily translate
to more effective assistance for target selection, as Study 3 attests,
highlighting the efficacy of the simulation-based approach.

Personalized simulation and inference. The inclusion of user-specific
parameters to account for motions’ variability (Table 1) has demon-
strated effectiveness in our simulation setting. Currently, we uni-
formly sample user parameters from a set range to reflect population-
level variability. However, in scenarios requiring inference for a
specific user or context, adjusting the user parameters’ sampling
distribution is a viable option for better representing the purpose at
hand. Previous work has demonstrated the feasibility of inversely
inferring user-specific parameters through neural density estima-
tion techniques [63]. This opens opportunities for personalized
target inference: A system can observe multiple target-selection
trials from a user to infer that user’s unique user parameters. The
inferred parameters can then serve as the new prior for subsequent
trials; thereby, the system can customize and enhance the system’s
target inference for this individual.

Deployment in real-world application. Our method can be applied
outside of research settings with minimal alterations. The first chal-
lenge involves identifying the start of a user’s aimed movement,
which is non-trivial in real-world sequences. Techniques similar
to those proposed by Chapuis et al. [14], which detect the start of
movement based on the cursor’s pause time and subsequent move-
ment distance, provide a viable solution. The second challenge is
the assumption that the target array is known in advance, crucial
for generating appropriate simulated data and training the infer-
ence model. To adapt to real-world scenarios, the inference model
requires pre-training on simulations that include diverse target
configurations. This intensive pre-training enables the model to
contextually infer target locations by processing the trajectory in
conjunction with the specific target array presented, adapting its
inference to the given situational context.

Generalizability. The proposed simulation-based target-inference
approach has potential for application in target-selection techniques
beyond raycasting, since none of the steps in our method are limited
to certain interactions. Recent studies [13, 40] have expanded the
repertoire of biomechanical models available, enhancing the versa-
tility of our approach for replicating human motion in interactive
tasks. Meanwhile, on the inference side, the flexibility inherent in
the neural networks makes it suitable for handling a broader range
of data channels or even longer trajectories [63]. Importantly, the
fast inference (∼5 ms) makes our approach compatible with systems
for real-time selection assistance across various interfaces. Another
advantage of our method is that training data can be generated
through different means, provided that synthetic motion dynamics
are available. This makes it possible to use optimal-control-based
methods such as LQG [25] and MPC [46]. However, it is critical to
remember that inference accuracy is contingent on the validity of
the synthetic data.

Limitations and future work. Our research simultaneously has iden-
tified several challenges for further investigation, to broaden the

area of application. Firstly, future research could focus on more real-
istic target-selection tasks; our validation was limited to simplified
scenarios (fixed starting points, grid-based arrangements, uniform
visual shapes, etc.). Secondly, simulations of human motion can be
further enhanced via more realism by incorporating factors such
as human-like perceptual processes (visual search), intermittency
of motor control, and muscle actuation. Thirdly, more user data
channels beyond just end-effector trajectory could be included;
additional sensor data (hand position, eye-gaze, etc.) could enrich
models and improve accuracy. Lastly, the field lacks a formal process
to translate human movements into computational models; cur-
rent methods need tuning of simulation parameters (user-specific
variables, reward formulations, etc.) across applications, limiting ef-
ficient generalization. We hope our research serves as a pioneering
example, inspiring future work in RL-driven biomechanical simu-
lations and enabling cost-effective design evaluation, hypothesis
testing, and study of complex interactions in HCI.
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